4.7 Article

Breakdown of the Hall-Petch relationship in extremely fine nanograined body-centered cubic Mo alloys

Journal

ACTA MATERIALIA
Volume 213, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2021.116950

Keywords

Nanocrystalline materials; Hall-Petch breakdown; Refractory bcc alloys; Grain boundary; Deformation behavior

Funding

  1. Shenyang National Laboratory for Materials Science [E01SL102]
  2. US National Science Foundation [DMR-2002860]
  3. NASA [80MSFC19C0050]

Ask authors/readers for more resources

The study investigates the hardness and deformation behavior of body centered cubic Mo(O) alloys with grain sizes ranging from 120 to 4 nm, highlighting a peak hardness at 11 nm and a transition towards glass-like deformation behaviors as grain size decreases.
Mechanical properties and deformation behavior have been studied in face-centered cubic (fcc) metals with extremely fine grain sizes, even below about 20 nm, but this range is rarely studied in the body centered cubic (bcc) metals. Here, we study the hardness and deformation behavior of bcc Mo(O) alloys with grain sizes from 120 to 4 nm, covering the range of classical Hall-Petch behavior as well as the regime where that scaling law breaks down, between about 11 and 4 nm. A hardness as high as 17.3 GPa was achieved at the strongest grain size of 11 nm, and the breakdown at smaller grain sizes is associated with a number of changes in behavior: an inflection in activation volume (associated with a change in rate dependence of deformation) and increasing shear localization. At coarser grain sizes this is associated with shear offsets at grain boundaries, pointing to an increasing prevalence of intergranular deformation (by sliding or grain rotation). At finer grain sizes localization is associated with the formation of large shear bands at scales far greater than the grain size. These behaviors are suggestive of a crossover from crystal-like to glass-like deformation behaviors at the finest grain sizes, consistent with the increasing fraction of disordered regions in the structure. (c) 2021 Published by Elsevier Ltd on behalf of Acta Materialia Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available