4.8 Article

Tumor necrosis factor alpha and interleukin 1 beta suppress myofibroblast activation via nuclear factor kappa B signaling in 3D-cultured mitral valve interstitial cells

Journal

ACTA BIOMATERIALIA
Volume 127, Issue -, Pages 159-168

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2021.03.075

Keywords

-

Funding

  1. American Heart Association [20PRE35211012]

Ask authors/readers for more resources

Mitral valve disease is a common cardiovascular condition characterized by fibrotic remodeling. In this study, it was found that pro-inflammatory cytokines TNF-alpha and IL-1 beta can downregulate myofibroblast differentiation in mitral VICs via the NF-kappa B signaling pathway, suggesting potential new avenues for pharmaceutical treatments for mitral valve disease.
Mitral valve disease is a major cause of cardiovascular morbidity throughout the world. Many different mitral valve pathologies feature fibrotic remodeling, often accompanied by an inflammatory state. Mitral valve fibrosis is mediated by valvular interstitial cells (VICs), which reside in the valve leaflets and often differentiate into myofibroblast-like cells during disease conditions. In this study, we investigated the effects of tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1 beta) on mitral VICs, since these pro-inflammatory cytokines have been shown to exert pleiotropic effects on various cell types in other fibrotic disorders. Using biomimetic three-dimensional culture systems, we demonstrated that TNF-alpha and IL-1 beta suppress myofibroblast differentiation in mitral VICs, as evidenced by gene and protein expression of alpha smooth muscle actin and smooth muscle 22 alpha. Addition of TNF-alpha and IL-1 beta also inhibited mitral VIC-mediated contraction of collagen gels. Furthermore, inhibition of NF-kappa B, which is downstream of TNF-alpha and IL-1 beta, reversed these effects. These results reveal targetable pathways for potential development of pharmaceutical treatments for alleviating fibrosis during mitral valve disease. Statement of significance Mitral valve disease is a common cardiovascular condition that is often accompanied by fibrotic tissue remodeling. Valvular interstitial cells (VICs), the fibroblast-like cells that reside in heart valve leaflets, are thought to drive fibrosis during valve disease by differentiating into activated myofibroblasts. However, the signaling pathways that regulate this process in the mitral valve are not fully understood. In the present study, we cultured mitral VICs in collagen and poly(ethylene glycol) scaffolds designed to mimic the heart valve microenvironment and treated the cell-seeded scaffolds with cytokines. Using these 3D culture models, we found that the pro-inflammatory cytokines TNF-alpha and IL-1 beta downregulate myofibroblast and fibrosis markers in mitral VICs via the canonical NF-kappa B signaling pathway. (C) 2021 Published by Elsevier Ltd on behalf of Acta Materialia Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available