4.5 Article

Decreased dynamin-related protein 1-related mitophagy induces myocardial apoptosis in the aging heart

Journal

ACTA BIOCHIMICA ET BIOPHYSICA SINICA
Volume 53, Issue 10, Pages 1354-1366

Publisher

SCIENCE PRESS
DOI: 10.1093/abbs/gmab112

Keywords

Drp1; mitophagy; apoptosis; PINK1; aging

Funding

  1. National Natural Science Foundation of China [81700270]
  2. Natural Science Foundation of Beijing Municipality [7192019]
  3. Capital Medical University Yanjing Medical College Initial Fund [21kypy02]

Ask authors/readers for more resources

This study aimed to investigate whether Drp1 is involved in inducing apoptosis by regulating mitophagy in aging myocardium. Results showed that decreased Drp1 levels led to mitochondrial damage and apoptosis in senescent cells. Additionally, Drp1-mediated mitophagy inhibited the PINK1/Parkin pathway in senescent cells, indicating that insufficient Drp1 induces cardiomyocyte apoptosis by inhibiting mitophagy in the aging heart.
An increase in cardiomyocyte apoptosis is the main contributor to the observed high morbidity of cardiac disease during aging. Mitochondria play important roles in cardiac apoptosis, and dynamin-related protein 1 (Drp1) is the critical factor that participates in mitochondrial fission and induces mitophagy to maintain mitochondria quality. However, whether Drp1 is involved in the increase of apoptosis in aging heart remains unclear. The purpose of this study was to determine whether Drp1 participates in inducing the apoptosis through regulating mitophagy in aging myocardium. To explore the effect of mitophagy and apoptosis in aging heart, we detected the expression of COX IV and the co-localization of COX IV and LC3 II, which reflect mitophagy, and measured adenosine triphosphate and reactive oxygen species contents, which reflect mitochondrial injury. Cell apoptosis was detected by measuring the activity of caspase-3 and the expression of cleaved caspase-3 and further confirmed by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. The results showed an increase in apoptosis and a decrease in mitophagy in aging cardiomyocytes, and apoptosis was ameliorated after the induction of mitophagy by carbonyl cyanide m-chlorophenyl hydrazone (a mitophagy activator) in D-galactose (D-gal)-induced senescence H9c2 cells. To clarify the role of Drp1 in apoptosis, we knocked down Drp1 by transfecting si-Drp1, or overexpressed Drp1 in senescent cells, and then detected mitophagy, mitochondrial injury, and apoptosis. The data showed that downregulated Drp1 induces mitochondrial damage and apoptosis. In addition, to explore the regulatory relationship between Drp1 and phosphatase and tensin homologue (PTEN)-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy, we detected the expressions of PINK1 and Parkin after the overexpression of Drp1 in the D-gal group cells and found that Drp1-mediated mitophagy inhibited the PINK1/Parkin pathway in senescent cells. Our results demonstrated that insufficient Drp1 induces cardiomyocyte apoptosis by inhibiting mitophagy, and Drp1 affects the PINK1/Parkin pathway of mitophagy in the aging heart.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available