4.8 Article

Graphdiyne Based Ternary GD-Cul-NiTiO3 S-Scheme Heterjunction Photocatalyst for Hydrogen Evolution

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 13, Issue 21, Pages 24896-24906

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c04874

Keywords

grapltdiyne ternary system; photocatalytic hydrogen evolution; NiTiO3; conjugated carbon network; heterojunction

Funding

  1. Chinese National Natural Science Foundation [22062001]

Ask authors/readers for more resources

This study successfully constructed the NiTiO3-CuI-GD ternary system to improve hydrogen production activity through morphology modulation and energy band structure design, proposing an S-scheme heterojunction photocatalytic reaction mechanism.
As the demand of fossil fuels continues to expand, hydrogen energy is considered a promising alternative energy. In this work, the NiTiO3-CuI-GD ternary system was successfully constructed based on morphology modulation and energy band structure design. First, the one-pot method was used to cleverly embed the cubes CuI in the stacked graphdiyne (GD) to prepare the hybrid CuI-GD, and CuI-GD was anchored on the surface of NiTiO3 by simple physical stirring. The unique spatial arrangement of the composite catalyst was utilized to improve the hydrogen production activity under light. Second, to combine various characterization tools and energy band structures, we proposed an step-scheme (S-scheme) heterojunction photocatalytic reaction mechanism, among them, the tubular NiTiO3 formed by the self-assembled of nanoparticles provided sufficient sites for the anchoring of CuI-GD, and the thin layer GD acted as an electron acceptor to capture a large number of electrons with the help of the conjugated carbon network; cubes CuI could consume holes in the reaction system; the loading of CuI-GD greatly improved the oxidation and reduction ability of the whole catalytic system. The S-scheme heterojunction accelerated the transfer of carriers and improved the separation efficiency. The experiment provides a new insight into the construction of an efficient and eco-friendly multicatalytic system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available