4.8 Article

Chemical and Electronic Modulation via Atomic Layer Deposition of NiO on Porous In2O3 Films to Boost NO2 Detection

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 13, Issue 33, Pages 39621-39632

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c11262

Keywords

air pollutant; NO2 detection; thin films; In2O3; gas sensor

Funding

  1. National Natural Science Foundation of China [61971252, 51972182]
  2. Shandong Provincial Natural Science Foundation [ZR2020JQ27]
  3. Youth Innovation Team Project of Shandong Provincial Education Department [2020KJN015]

Ask authors/readers for more resources

Designing a unique NiO-functionalized macroporous In2O3 thin film by atomic layer deposition (ALD) enables high sensitivity to NO2 at low temperatures. Manipulating the oxygen vacancy concentration and p-n heterojunctions in the In2O3/NiO hybrid films significantly impacts the surface chemical and electrical properties of the sensing films. The optimized In2O3/NiO film sensor exhibits a high response to 10 ppm NO2 at 145 degrees C with an ultralow detection limit due to the paramount surface active sites and high carrier concentration enabled by the oxygen vacancies.
To achieve high sensitivity under low-temperature operation is currently a challenge for metal oxide semiconductor gas sensors. In this work, a unique NiO-functionalized macroporous In2O3 thin film is designed by atomic layer deposition (ALD), which demonstrates great potential in electronic sensors for detecting NO2 at low temperature. This strategy allows for efficient engineering of the oxygen vacancy concentration and the formation of p-n heterojunctions in the hybrid In2O3/NiO thin films, which has been found to greatly impact the surface chemical and electrical properties of the sensing films. The sensor based on the optimized In2O3/NiO films exhibits a very high response of 532.2 to 10 ppm NO2, which is 26 times higher than that of the In2O3, at a relatively low operating temperature of 145 degrees C. In addition, an ultralow detection limit of ca. 6.9 ppb has been obtained, which surpasses most reports based on metal oxide sensors. Mechanistic investigations disclose that the improved sensor properties are resultant from the paramount surface active sites and high carrier concentration enabled by the oxygen vacancies, while excessive NiO ALD leads to a decreased sensor response due to the formed p-n heterojunctions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available