4.8 Article

O, S-Dual-Vacancy Defects Mediated Efficient Charge Separation in ZnIn2S4/Black TiO2 Heterojunction Hollow Spheres for Boosting Photocatalytic Hydrogen Production

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 13, Issue 31, Pages 37545-37552

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c10943

Keywords

photocatalysis; mesoporous black TiO2 hollow sphere; ZnIn2S4 nanosheet; O; S dual vacancy; heterojunction

Funding

  1. National Natural Science Foundation of China [21676065, 21871078]

Ask authors/readers for more resources

The defective ZnIn2S4 nanosheets/mesoporous black TiO2 heterojunction hollow spheres exhibit excellent photocatalytic performance under visible-light irradiation, with the narrow band gap expanding light response and providing more active sites for photocatalytic reaction. This novel heterojunction hollow sphere with high performance has broad application prospects in the energy field.
Defective ZnIn2S4 nanosheets/mesoporous black TiO2 heterojunction hollow spheres (H-ZIS/b-TiO2) are prepared through hydrothermal and surface low-temperature hydrogenation strategies, which show broad-spectrum response and excellent charge separation efficiency. This H-ZIS/b-TiO2 flower-like heterojunction hollow spheres with a narrow band gap of similar to 1.88 eV expand the light response to visible light and show excellent photocatalytic hydrogen evolution rate (278 mu mol h(-1) 50 mg(-1)) under visible-light irradiation, which is 1.5 times as high as that of ZnIn2S4/black TiO2 heterojunction hollow spheres (ZIS/b-TiO2) (181 mu mol h(-1) 50 mg(-1)). The excellent photocatalytic performance is due to the formation of O, S dual vacancies in b-TiO2 and H-ZIS providing more active sites for photocatalytic reaction and improving the charge separation efficiency, heterojunctions promoting transport of photogenerated carriers, and the hollow structure increasing light utilization by reflecting light. The novel heterojunction hollow sphere with high performance has broad application prospects in the field of energy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available