4.8 Article

Functional Lignin Nanoparticles with Tunable Size and Surface Properties: Fabrication, Characterization, and Use in Layer-by-Layer Assembly

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 13, Issue 22, Pages 26308-26317

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c03496

Keywords

lignin nanoparticle; PAH; film; SPAR; QCM; adsorption; interface

Funding

  1. Globalink MITACS national research organization
  2. NSERC
  3. Canada Foundation for Innovation
  4. Canada Research Chairs
  5. Northern Ontario Heritage Fund Corporation
  6. Ontario Research Fund programs

Ask authors/readers for more resources

The research presents a method for preparing functional lignin nanoparticles from carboxymethylated or carboxypentylated lignin, demonstrating high tolerance and well-controlled size distribution. It is shown that carboxypentylated lignin nanoparticles form a more tightly-packed adlayer compared to carboxymethylated lignin nanoparticles when adsorbed onto the surface of poly(allylamine hydrochloride).
Lignin is the richest source of renewable aromatics and has immense potential for replacing synthetic chemicals. The limited functionality of lignin is, however, challenging for its potential use, which motivates research for creating advanced functional lignin-derived materials. Here, we present an aqueous-based acid precipitation method for preparing functional lignin nanoparticles (LNPs) from carboxy-methylated or carboxy-pentylated lignin. We observe that the longer grafted side chains of carboxy-pentylated lignin allow for the formation of larger LNPs. The functional nanoparticles have high tolerance against salt and aging time and well-controlled size distribution with R-h <= 60 nm over a pH range of 5-11. We further investigate the layer-by-layer (LbL) assembly of the LNPs and poly(allylamine hydrochloride) (PAH) using a stagnation point adsorption reflectometry (SPAR) and quartz crystal microbalance with dissipation (QCM-D). Results demonstrate that LNPs made of carboxypentylated lignin (i.e., PLNPs with the adsorbed mass of 3.02 mg/m(2)) form a more packed and thicker adlayer onto the PAH surface compared to those made of carboxymethylated lignin (i.e., CLNPs with the adsorbed mass of 2.51 mg/m(2)). The theoretical flux, J, and initial rate of adsorption, (d Gamma/dt)(0), analyses confirm that 22% of PLNPs and 20% of CLNPs arriving at the PAH surface are adsorbed. The present study provides a feasible platform for engineering LNPs with a tunable size and adsorption behavior, which can be adapted in hionanomaterial production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available