4.8 Article

Intrinsically Photopolymerizable Dynamic Polymers Derived from a Natural Small Molecule

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 13, Issue 37, Pages 44860-44867

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c11679

Keywords

dynamic covalent chemistry; supramolecular materials; disulfides; dynamic materials; photopolymerization

Funding

  1. National Natural Science Foundation of China [22025503, 21790361, 21871084, 21672060]
  2. Shanghai Municipal Science and Technology Major Project [2018SHZDZX03]
  3. Fundamental Research Funds for the Central Universities
  4. Programme of Introducing Talents of Discipline to Universities [B16017]
  5. Program of Shanghai Academic/Technology Research Leader [19XD1421100]
  6. Shanghai Science and Technology Committee [17520750100]

Ask authors/readers for more resources

In this study, it was found that thioctic acid can be directly transformed into a poly(disulfides) network under visible light irradiation, showcasing various excellent properties without the need for external additives.
Developing photopolymerizable polymeric materials offers many opportunities to process materials in a remote and controllable manner. However, most photopolymerizable technologies require the external introduction of photoabsorbing units, whereas designing intrinsically photopolymerizable polymers is still highly challenging. Here, we report that a natural small-molecule disulfide, thioctic acid, can be directly transformed into a poly(disulfides) network under the irradiation of visible light without any external additives. The resulting polymer network exhibits optical transparency, mechanical stretchability and toughness, ambient self-healing ability, and especially strong adhesive ability to different surfaces. The dynamic covalent backbones of the poly(disulfides) endow the depolymerization ability to recycle the material in a closed-loop manner. We foresee that this facile and robust photopolymerization system is of great promise toward low-cost and high-performance photocuring coatings and adhesives.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available