4.6 Article

Bacterial Endophytes of Spring Wheat Grains and the Potential to Acquire Fe, Cu, and Zn under Their Low Soil Bioavailability

Journal

BIOLOGY-BASEL
Volume 10, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/biology10050409

Keywords

spring wheat; T; aestivum L; emmer wheat; yield; endophytic bacteria; iron; copper; zinc

Categories

Funding

  1. Visegrad Fund [51810815]
  2. CRDF-Global grant [OISE 16-62755-0]
  3. U.S.-Ukraine Foundation BioTech Initiative
  4. US-Ukraine Foundation Biotech Initiative

Ask authors/readers for more resources

Unmasking the endophytic bacteria communities from wheat grains can provide insights into microbial colonization, bioactive compound production, and mineral nutrition role. The bacterial isolates from different wheat varieties may influence wheat yield and nutritional characteristics by synthesizing indole-related compounds.
Simple Summary Unmasking the overall endophytic bacteria communities from wheat grains may help to identify and describe the microbial colonization of bread and emmer varieties, their link to the bioactive compounds produced, and their possible role in mineral nutrition. The possibility of using microorganisms to improve the microelemental composition of grain is an important food security concern, as approximately one-third of the human population experiences latent starvation caused by Fe (anemia), Zn, or Cu deficiency. Four wheat varieties from T. aestivum L. and T. turgidum subsp. dicoccum were grown in field conditions with low bioavailability of microelements in the soil. Varietal differences in the yield, yield characteristics, and the grain micronutrient concentrations were compared with the endophytic bacteria isolated from the grains. Twelve different bacterial isolates were obtained that represented the genera Staphylococcus, Pantoea, Sphingobium, Bacillus, Kosakonia, and Micrococcus. All studied strains were able to synthesize indole-related compounds (IRCs) with phytohormonal activity. IRCs produced by the bacterial genera Pantoea spp. and Bacillus spp. isolated from high-yielding Oksamyt myronivs'kyi and Holikovs'ka grains may be considered as one of the determinants of the yield of wheat and its nutritional characteristics. Wheat grains are usually low in essential micronutrients. In resolving the problem of grain micronutritional quality, microbe-based technologies, including bacterial endophytes, seem to be promising. Thus, we aimed to (1) isolate and identify grain endophytic bacteria from selected spring wheat varieties (bread Oksamyt myronivs'kyi, Struna myronivs'ka, Dubravka, and emmer Holikovs'ka), which were all grown in field conditions with low bioavailability of microelements, and (2) evaluate the relationship between endophytes' abilities to synthesize auxins and the concentration of Fe, Zn, and Cu in grains. The calculated biological accumulation factor (BAF) allowed for comparing the varietal ability to uptake and transport micronutrients to the grains. For the first time, bacterial endophytes were isolated from grains of emmer wheat T. turgidum subsp. dicoccum. Generally, the 12 different isolates identified in the four varieties belonged to the genera Staphylococcus, Pantoea, Sphingobium, Bacillus, Kosakonia, and Micrococcus (NCBI accession numbers: MT302194-MT302204, MT312840). All the studied strains were able to synthesize the indole-related compounds (IRCs; max: 16.57 mu g center dot mL(-1)) detected using the Salkowski reagent. The IRCs produced by the bacterial genera Pantoea spp. and Bacillus spp. isolated from high-yielding Oksamyt myronivs'kyi and Holikovs'ka grains may be considered as one of the determinants of the yield of wheat and its nutritional characteristics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available