4.7 Article

Blood Pressure Regulation Evolved from Basic Homeostatic Components

Journal

BIOMEDICINES
Volume 9, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/biomedicines9050469

Keywords

blood pressure; homeostasis; evolution; gene orthologs

Ask authors/readers for more resources

Blood pressure is determined by various physiological factors regulated by complex neural, endocrine, and paracrine mechanisms. Genes related to BP regulation are predominantly expressed in the kidney and adrenals of complex organisms, and in the nervous system of low complexity organisms. The complex system of BP regulation has evolved from simpler components to maintain key homeostatic functions in organisms' existence and survival.
Blood pressure (BP) is determined by several physiological factors that are regulated by a range of complex neural, endocrine, and paracrine mechanisms. This study examined a collection of 198 human genes related to BP regulation, in the biological processes and functional prisms, as well as gene expression in organs and tissues. This was made in conjunction with an orthology analysis performed in 19 target organisms along the phylogenetic tree. We have demonstrated that transport and signaling, as well as homeostasis in general, are the most prevalent biological processes associated with BP gene orthologs across the examined species. We showed that these genes and their orthologs are expressed primarily in the kidney and adrenals of complex organisms (e.g., high order vertebrates) and in the nervous system of low complexity organisms (e.g., flies, nematodes). Furthermore, we have determined that basic functions such as ion transport are ancient and appear in all organisms, while more complex regulatory functions, such as control of extracellular volume emerged in high order organisms. Thus, we conclude that the complex system of BP regulation evolved from simpler components that were utilized to maintain specific homeostatic functions that play key roles in existence and survival of organisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available