4.6 Article

Climate Change in Rwanda: The Observed Changes in Daily Maximum and Minimum Surface Air Temperatures during 1961-2014

Journal

FRONTIERS IN EARTH SCIENCE
Volume 9, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/feart.2021.619512

Keywords

minimum temperature (Tmin); maximum temperature (Tmax); warming; Rwanda; climate change

Funding

  1. NSFC [91837310, 41675041, 41620104009]
  2. National Key R&D Program of China [2018YFC1507200, 2017YFC1501402]
  3. Second Tibetan Plateau Scientific Expedition and Research (STEP) program [2019QZKK0104]
  4. Key research and development projects in Anhui province [201904a07020099]
  5. CLIMATE-TPE [32070]
  6. State Key Laboratory of Loess and Quaternary Geology [SKLLQG2010]

Ask authors/readers for more resources

The study analyzed the temperature variations in Rwanda from 1961 to 2014, finding significant increases in both minimum and maximum temperatures in different elevation regions. The research mainly focused on the temperature changes in three seasons and annually, revealing a noticeable warming trend in Rwanda since the early 1980s.
Rwanda has experienced high temperature rising phenomena over the last decades and hence, highly vulnerable to climate change. This paper examined the spatial and temporal variations of daily maximum and minimum surface air temperature (Tmin and Tmax) and diurnal temperature range (DTR). It studied variables at monthly, seasonal and annual time-scales from 1961 to 2014. The study applied various statistical methods such as ordinary least-square fitting, Mann-Kendall, Sen' slope and Sequential Mann-Kendall statistical test to the new reconstructed ENACTS dataset that cover the period from 1983 to 2014 while pre-1983s recorded data from 24 meteorological stations have been added to complete the lengthiness of ENACTS data. The January to February season did not show a significant trend at seasonal time-scales. The authors decided only to consider March-to-May, June-to-August and October-to-December seasons for further analyses. Topography impacts on temperature classified stations into three regions: region one (R1) (1,000-1,500 m), region two (R2) (1,500-2,000 m) and region three (R3) (>= 2,000 m). With high confidence, the results indicate a significant positive trend in both Tmin and Tmax in all three regions during the whole study period. However, the magnitude rate of temperatures change is different in three regions and it varies in seasonal and annual scale. The spatial distributions of Tmax and Tmin represent a siginificant warming trend over the whole country notably since the early 1980s. Surprisingly, Tmin increased at a faster rate than Tmax in R3 (0.27 vs. 0.07 degrees C/decade in March-to-May) and (0.29 vs. 0.04 degrees C/decade in October-to-December), resulting in a significant decrease in the DTR. This is another confirmation of warming in Rwanda. The mutation test application exhibited most of the abrupt changes in the seasonal and annual Tmax and Tmin trends between 1984 and 1990. The present work mainly focus on the spatial and temporal variability of Tmin, Tmax and DTR in Rwanda and their relationship with elevation change, leaving a gap in other potential cause factors explored in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available