4.5 Article

Cell-Type Apoptosis in Lung during SARS-CoV-2 Infection

Journal

PATHOGENS
Volume 10, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/pathogens10050509

Keywords

SARS-CoV-2; apoptosis; lung; human; non-human primate; co-culture; endothelial cell; epithelial cell; TUNEL assay

Categories

Funding

  1. U.S. Department of Health AMP
  2. Human Services \ NIH \ National Institute of Allergy and Infectious Diseases (NIAID) [R01AI121012, R21AI137785, R21AI154211, R03AI142406]

Ask authors/readers for more resources

This study examined apoptosis in lung tissues from COVID-19 patients and a non-human primate model of SARS-CoV-2 infection, finding that both intrinsic and extrinsic apoptotic pathways are activated during SARS-CoV-2 infection. Different cell types showed varying apoptotic responses to the virus, shedding light on a novel insight into the pathogenesis of ARDS following SARS-CoV-2 infection.
The SARS-CoV-2 pandemic has inspired renewed interest in understanding the fundamental pathology of acute respiratory distress syndrome (ARDS) following infection. However, the pathogenesis of ARDS following SRAS-CoV-2 infection remains largely unknown. In the present study, we examined apoptosis in postmortem lung sections from COVID-19 patients and in lung tissues from a non-human primate model of SARS-CoV-2 infection, in a cell-type manner, including type 1 and 2 alveolar cells and vascular endothelial cells (ECs), macrophages, and T cells. Multiple-target immunofluorescence assays and Western blotting suggest both intrinsic and extrinsic apoptotic pathways are activated during SARS-CoV-2 infection. Furthermore, we observed that SARS-CoV-2 fails to induce apoptosis in human bronchial epithelial cells (i.e., BEAS2B cells) and primary human umbilical vein endothelial cells (HUVECs), which are refractory to SARS-CoV-2 infection. However, infection of co-cultured Vero cells and HUVECs or Vero cells and BEAS2B cells with SARS-CoV-2 induced apoptosis in both Vero cells and HUVECs/BEAS2B cells but did not alter the permissiveness of HUVECs or BEAS2B cells to the virus. Post-exposure treatment of the co-culture of Vero cells and HUVECs with a novel non-cyclic nucleotide small molecule EPAC1-specific activator reduced apoptosis in HUVECs. These findings may help to delineate a novel insight into the pathogenesis of ARDS following SARS-CoV-2 infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available