4.7 Article

Aqueous Blackcurrant Extract Improves Insulin Sensitivity and Secretion and Modulates the Gut Microbiome in Non-Obese Type 2 Diabetic Rats

Journal

ANTIOXIDANTS
Volume 10, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/antiox10050756

Keywords

blackcurrants; insulin sensitivity; insulin secretion; inflammation; β -cell mass; gut microbiota

Funding

  1. Food Functionality Evaluation program under the Ministry of Agriculture, Food and Rural Affairs
  2. Korea Food Research Institute

Ask authors/readers for more resources

The study found that blackcurrant extracts can improve glucose metabolism and insulin sensitivity in non-obese type 2 diabetic animals, reduce inflammation and oxidative stress, and increase the diversity of gut microbiota.
This study was undertaken to determine whether aqueous blackcurrant extracts (BC) improve glucose metabolism and gut microbiomes in non-obese type 2 diabetic animals fed a high-fat diet and to identify the mechanism involved. Partially pancreatectomized male Sprague-Dawley rats were provided a high-fat diet containing 0% (control), 0.2% (L-BC; low dosage), 0.6% (M-BC; medium dosage), and 1.8% (H-BC; high dosage) blackcurrant extracts; 0.2% metformin (positive-C); plus 1.8%, 1.6%, 1.2%, 0%, and 1.6% dextrin, specifically indigestible dextrin, daily for 8 weeks. Daily blackcurrant extract intakes were equivalent to 100, 300, and 900 mg/kg body weight (bw). After a 2 g glucose or maltose/kg bw challenge, serum glucose and insulin concentrations during peak and final states were obviously lower in the M-BC and H-BC groups than in the control group (p < 0.05). Intraperitoneal insulin tolerance testing showed that M-BC and H-BC improved insulin resistance. Hepatic triglyceride deposition, TNF-alpha expression, and malondialdehyde contents were lower in the M-BC and H-BC groups than in the control group. Improvements in insulin resistance in the M-BC and H-BC groups were associated with reduced inflammation and oxidative stress (p < 0.05). Hyperglycemic clamp testing showed that insulin secretion capacity increased in the acute phase (2 to 10 min) in the M-BC and H-BC groups and that insulin sensitivity in the hyperglycemic state was greater in these groups than in the control group (p < 0.05). Pancreatic beta-cell mass was greater in the M-BC, H-BC, and positive-C groups than in the control group. Furthermore, beta-cell proliferation appeared to be elevated and apoptosis was suppressed in these three groups (p < 0.05). Serum propionate and butyrate concentrations were higher in the M-BC and H-BC groups than in the control group. BC dose-dependently increased alpha-diversity of the gut microbiota and predicted the enhancement of oxidative phosphorylation-related microbiome genes and downregulation of carbohydrate digestion and absorption-related genes, as determined by PICRUSt2 analysis. In conclusion, BC enhanced insulin sensitivity and glucose-stimulated insulin secretion, which improved glucose homeostasis, and these improvements were associated with an incremental increase of the alpha-diversity of gut microbiota and suppressed inflammation and oxidative stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available