4.7 Article

Monitoring the Spatial Variability of Knapweed (Centaurea diluta Aiton) in Wheat Crops Using Geostatistics and UAV Imagery: Probability Maps for Risk Assessment in Site-Specific Control

Journal

AGRONOMY-BASEL
Volume 11, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/agronomy11050880

Keywords

cokriging; economic thresholds; geostatistics; indicator kriging; prescriptions maps; remote sensing; vegetation indices; weed infestation severity index

Funding

  1. Spanish Ministry of Science, Universities and Innovation, FEDER Funds (Fondo Europeo de Desarrollo Regional) [AGL2017-83325-C4-4R]

Ask authors/readers for more resources

The study utilized UAV imagery and multivariate geostatistical methods to investigate the spatial variability of C. diluta density in two wheat fields and delineate potential control zones based on occurrence probability maps.
Assessing the spatial distribution of weeds within a field is a key step to the success of site-specific weed management strategies. Centaurea diluta (knapweed) is an emerging weed that is causing a major agronomic problem in southern and central Spain because of its large size, the difficulty of controlling it, and its high competitive ability. The main objectives of this study were to examine the spatial variability of C. diluta density in two wheat fields by multivariate geostatistical methods using unmanned aerial vehicle (UAV) imagery as secondary information and to delineate potential control zones for site-specific treatments based on occurrence probability maps of weed infestation. The primary variable was obtained by grid weed density field samplings, and the secondary variables were derived from UAV imagery acquired the same day as the weed field surveys. Kriging and cokriging with UAV-derived variables that displayed a strong correlation with weed density were used to compare C. diluta density mapping performance. The accuracy of the predictions was assessed by cross-validation. Cokriging with UAV-derived secondary variables generated more accurate weed density maps with a lower RMSE compare with kriging and cokriging with RVI, NDVI, ExR, and ExR(2) (the best methods for the prediction of knapweed density). Cokriged estimates were used to generate probability maps for risk assessment when implementing site-specific weed control by indicator kriging. This multivariate geostatistical approach enabled the delineation of winter wheat fields into two zones for different prescription treatments according to the C. diluta density and the economic threshold.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available