4.7 Article

Comparative Study of Biological Characteristics, and Osteoblast Differentiation of Mesenchymal Stem Cell Established from Camelus dromedarius Skeletal Muscle, Dermal Skin, and Adipose Tissues

Journal

ANIMALS
Volume 11, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/ani11041017

Keywords

mesenchymal stem cells; Camelus dromedarius; skeletal muscle; dermal skin; adipose tissue; differentiation

Ask authors/readers for more resources

This study evaluated the biological characteristics of mesenchymal stem cells (MSCs) derived from skeletal muscle, dermal skin, and adipose tissue from a single donor Camelus dromedarius, demonstrating differences in proliferation and differentiation abilities. The adipogenic differentiation capacity of adipose tissue-derived MSCs was significantly higher, while the osteoblast differentiation capacity was lower compared to skeletal muscle and dermal skin-derived MSCs. Further comparative analysis revealed variations in pluripotent marker expression and alkaline phosphatase activity among the different tissue-derived MSCs.
Simple Summary Mesenchymal stem cells (MSCs) can be isolated in various types of tissues and exhibit different characteristics. In this study, MSCs were established from skeletal muscle, dermal skin, and adipose tissue from a single Camelus dromedarius donor. We also identified an efficient source for osteoblast differentiation and analyzed biological characteristics. Mesenchymal stem cells (MSCs) showed in vitro mesoderm-lineage differentiation and self-renewal capacity. However, no comparative study was reported on the biological characteristics of stem cells derived from skeletal muscle (SM-MSCs), dermal skin (DS-MSCs), and adipose tissues (A-MSCs) from a single donor in camels. The present study aimed to evaluate the influence of MSCs source on stem cell characteristics. We evaluated proliferation capacity and mesoderm-lineage differentiation potential from SM-MSCs, DS-MSCs, and A-MSCs. They showed spindle-like morphology after homogenization. The proliferation ability was not significantly difference in any of the groups. Furthermore, the portion of the cell cycle and expression of pluripotent markers (Oct4, Sox2, and Nanog) were similar in all cell lines at passage 3. The differentiation capacity of A-MSCs into adipocytes was significantly higher than that of SM-MSCs and DS-MSCs. However, the osteoblast differentiation capacity of A-MSCs was significantly lower than that of SM-MSCs and DS-MSCs. Additionally, after osteoblast differentiation, the alkaline phosphatase (ALP) activity and calcium content significantly decreased in A-MSCs compared to SM-MSCs and DS-MSCs. To the best of our knowledge, we primarily established MSCs from the single camel and demonstrated their comparative characteristics, including expression of pluripotent factors and proliferation, and in vitro differentiation capacity into adipocytes and osteoblasts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available