4.7 Article

Feeding Forage Mixtures of Ryegrass (Lolium spp.) with Clover (Trifolium spp.) Supplemented with Local Feed Diets to Reduce Enteric Methane Emission Efficiency in Small-Scale Dairy Systems: A Simulated Study

Journal

ANIMALS
Volume 11, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/ani11040946

Keywords

enteric methane emissions; supplementation; feeding strategies; dairy

Funding

  1. UAEMex [4335/2017]

Ask authors/readers for more resources

This study evaluated the effects of different dairy cow diets based on local feeding strategies on enteric methane emissions and crude protein surpluses in small-scale dairy systems. Results showed that diet composition, management, and pasture quality can significantly influence methane emissions and nutrient balances in dairy cows.
Simple Summary The present study simulated the effects of different dairy cow diets based on local feeding strategies on enteric methane (CH4) emissions and surpluses of crude protein (CP) in small-scale dairy systems (SSDS). Our study evaluated five scenarios of supplementation (S): without supplementation (control diet), meaning no supplements were provided, only pasture (S1); pasture supplemented with 4.5 kg dry matter (DM)/cow/day of commercial concentrate (CC) (S2); supplemented with 200 g DM/kg per milk produced of CC (S3); supplemented with ground maize grains and wet distiller brewery grains (S4); and S4 plus maize silage (S5). In addition, two pasture managements (cut-and-carry versus grazing) and two varieties of legumes (red clover vs. white clover) were considered. The results suggest that methane emissions and large nitrogen surpluses in the diet are affected by the type of supplementation given to cows, in addition to the management and chemical composition of the pastures offered. In SSDS, it is possible to formulate diets with local inputs to reduce excess nutrients and dependence on external inputs, increasing feed efficiency and reducing costs (excess of CP in the diet) and CH4 emissions. In cattle, greenhouse gas (GHG) emissions and nutrient balance are influenced by factors such as diet composition, intake, and digestibility. This study evaluated CH4 emissions and surpluses of crude protein, using five simulated scenarios of supplementation in small-scale dairy systems (SSDS). In addition, two pasture managements (cut-and-carry versus grazing) and two varieties of legumes (red clover vs. white clover) were considered. The diets were tested considering similar milk yield and chemical composition; CH4 emission was estimated using Tier-2 methodology from the Intergovernmental Panel on Climate Change (IPCC), and the data were analyzed in a completely randomized 5 x 2 x 2 factorial design. Differences (p < 0.05) were found in predicted CH4 emissions per kg of milk produced (g kg(-1) FCM 3.5%). The lowest predicted CH4 emissions were found for S3 and S4 as well as for pastures containing white clover. Lower dietary surpluses of CP (p < 0.05) were observed for the control diet (1320 g CP/d), followed by S5 (1793 g CP/d), compared with S2 (2175 g CP/d), as well as in cut-and-carry management with red clover. A significant correlation (p < 0.001) was observed between dry matter intake and CH4 emissions (g(-1) and per kg of milk produced). It is concluded that the environmental impact of formulating diets from local inputs (S3 and S4) can be reduced by making them more efficient in terms of methane kg(-1) of milk in SSDS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available