4.6 Article

Optimization of Methanol Synthesis under Forced Periodic Operation

Journal

PROCESSES
Volume 9, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/pr9050872

Keywords

methanol synthesis; forced periodic operation; nonlinear optimization; multi-objective optimization; Pareto front

Funding

  1. German Research Foundation (DFG) [SPP 2080, Kl 417/6-1, PE 2915/1-1, SE 586/24-1, 406561907]

Ask authors/readers for more resources

This study investigated the potential of alternative forced periodic operation modes in methanol production through numerical optimization, and found that significant improvements in both objective functions can be achieved by utilizing periodic inputs.
Traditionally, methanol is produced in large amounts from synthesis gas with heterogeneous Cu/ZnO/Al2O3 catalysts under steady state conditions. In this paper, the potential of alternative forced periodic operation modes is studied using numerical optimization. The focus is a well-mixed isothermal reactor with two periodic inputs, namely, CO concentration in the feed and total feed flow rate. Exploiting a detailed kinetic model which also describes the dynamics of the catalyst, a sequential NLP optimization approach is applied to compare optimal steady state solutions with optimal periodic regimes. Periodic solutions are calculated using dynamic optimization with a periodicity constraint. The NLP optimization is embedded in a multi-objective optimization framework to optimize the process with respect to two objective functions and generate the corresponding Pareto fronts. The first objective is the methanol outlet flow rate. The second objective is the methanol yield based on the total carbon in the feed. Additional constraints arising from the complex methanol reaction and the practical limitations are introduced step by step. The results show that significant improvements for both objective functions are possible through periodic forcing of the two inputs considered here.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available