4.6 Article

Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles Elicit Better Preservation of the Intra-Renal Microvasculature Than Renal Revascularization in Pigs with Renovascular Disease

Journal

CELLS
Volume 10, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/cells10040763

Keywords

renovascular disease; microvasculature; revascularization; mesenchymal stem; stromal cells; extracellular vesicles

Categories

Funding

  1. NIH [DK122137, DK106427, DK120292, DK122734]

Ask authors/readers for more resources

This study showed that mesenchymal stem cell-derived extracellular vesicles (EVs) offer superior protection of the stenotic kidney microvasculature and greater attenuation of renal injury and fibrosis compared to percutaneous transluminal renal angioplasty (PTRA), despite both strategies similarly improving renal hemodynamics and function. The EVs were found to be enriched with pro-angiogenic, anti-inflammatory, and antioxidants genes, highlighting their potential as a promising therapeutic intervention in renovascular disease.
Background: Percutaneous transluminal renal angioplasty (PTRA) confers clinical and mortality benefits in select 'high-risk' patients with renovascular disease (RVD). Intra-renal-delivered extracellular vesicles (EVs) released from mesenchymal stem/stromal cells (MSCs) protect the kidney in experimental RVD, but have not been compared side-by-side to clinically applied interventions, such as PTRA. We hypothesized that MSC-derived EVs can comparably protect the post-stenotic kidney via direct tissue effects. Methods: Five groups of pigs (n = 6 each) were studied after 16 weeks of RVD, RVD treated 4 weeks earlier with either PTRA or MSC-derived EVs, and normal controls. Single-kidney renal blood flow (RBF) and glomerular filtration rate (GFR) were assessed in vivo with multi-detector CT, and renal microvascular architecture (3D micro CT) and injury pathways ex vivo. Results: Despite sustained hypertension, EVs conferred greater improvement of intra-renal microvascular and peritubular capillary density compared to PTRA, associated with attenuation of renal inflammation, oxidative stress, and tubulo-interstitial fibrosis. Nevertheless, stenotic kidney RBF and GFR similarly rose in both PTRA- and EV-treated pigs compared RVD + Sham. mRNA sequencing reveled that EVs were enriched with pro-angiogenic, anti-inflammatory, and antioxidants genes. Conclusion: MSC-derived EVs elicit a better preservation of the stenotic kidney microvasculature and greater attenuation of renal injury and fibrosis compared to PTRA, possibly partly attributed to their cargo of vasculo-protective genes. Yet, both strategies similarly improve renal hemodynamics and function. These observations shed light on diverse mechanisms implicated in improvement of post-stenotic kidney function and position EVs as a promising therapeutic intervention in RVD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available