4.6 Review

The Potential Equivalents of TET2 Mutations

Journal

CANCERS
Volume 13, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/cancers13071499

Keywords

TET2; mutations; equivalent; expression

Categories

Funding

  1. Romanian Ministry of Research and Innovation, CCCDI-UEFISCDI within PNCDI III [PN-III-P4-ID-PCCF-2016-0112]
  2. European Economic Space between Romania and Iceland 2020-2022 [19-COP-0031]
  3. internal grant of the Iuliu Hatieganu University of Medicine and Pharmacy (UMPh), Cluj-Napoca
  4. [PN-III-P1-1.1-TE-2019-0271]

Ask authors/readers for more resources

In acute myeloid leukemia (AML), TET2 mutations have been observed to be mutually exclusive with IDH1, IDH2, and WT1 mutations, all showing a similar impact on the transcription profile. Other genes also interact with TET2 and influence its effect, potentially leading to the existence of other signatures mimicking TET2 mutations.
Simple Summary: In acute myeloid leukemia (AML) TET2 mutations have been observed to be mutually exclusive with IDH1, IDH2, and WT1 mutations, all of them showing a similar impact on the transcription profile. Because of this, it is possible that TET2/IDH1/2/WT1 mutated AML could be considered as having similar characteristics between each other. Nonetheless, other genes also interact with TET2 and influence its activity. Because of this, it is possible that other signatures exist that would mimic the effect of TET2 mutations. Thus, in this review, we searched the literature for the genes that were observed to interact with TET2 and classified them in the following manner: transcription alteration, miRs, direct interaction, posttranslational changes, and substrate reduction. TET2 is a dioxygenase dependent on Fe2+ and alpha-ketoglutarate which oxidizes 5-methylcytosine (5meC) to 5-hydroxymethylcytosine (5hmeC). TET proteins successively oxidize 5mC to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Among these oxidized methylcytosines, 5fC and 5caC are directly excised by thymine DNA glycosylase (TDG) and ultimately replaced with unmethylated cytosine. Mutations in TET2 have been shown to lead to a hypermethylated state of the genome and to be responsible for the initiation of the oncogenetic process, especially in myeloid and lymphoid malignancies. Nonetheless, this was also shown to be the case in other cancers. In AML, TET2 mutations have been observed to be mutually exclusive with IDH1, IDH2, and WT1 mutations, all of them showing a similar impact on the transcription profile of the affected cell. Because of this, it is possible that TET2/IDH1/2/WT1 mutated AML could be considered as having similar characteristics between each other. Nonetheless, other genes also interact with TET2 and influence its effect, thus making it possible that other signatures exist that would mimic the effect of TET2 mutations. Thus, in this review, we searched the literature for the genes that were observed to interact with TET2 and classified them in the following manner: transcription alteration, miRs, direct interaction, posttranslational changes, and substrate reduction. What we propose in the present review is the potential extension of the TET2/IDH1/2/WT1 entity with the addition of certain expression signatures that would be able to induce a similar phenotype with that induced by TET2 mutations. Nonetheless, we recommend that this approach be taken on a disease by disease basis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available