4.6 Review

Mouse Models for Deciphering the Impact of Homologous Recombination on Tumorigenesis

Journal

CANCERS
Volume 13, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/cancers13092083

Keywords

homologous recombination; DNA repair; genomic instability; mouse model; tumorigenesis

Categories

Funding

  1. Ligue Nationale contre le cancer Equipe labellisee 2020
  2. ANR (Agence Nationale de la Recherche) [ANR-16-CE12-0011-02, ANR-16-CE18-0012-02]
  3. INCa (Institut National du Cancer) [PLBIO18-232]
  4. Ligue nationale contre le Cancer
  5. Agence Nationale de la Recherche (ANR) [ANR-16-CE18-0012] Funding Source: Agence Nationale de la Recherche (ANR)

Ask authors/readers for more resources

Homologous recombination (HR) is a crucial DNA repair pathway for genome stability, and mutations in many HR genes are associated with cancer risk. Transgenic mouse models are important for studying HR in tumorigenesis, but invalidating HR genes can lead to embryonic lethality in mammals. Complex strategies have been developed to overcome this challenge and investigate the impact of HR defects on tumorigenesis in vivo. The central HR factor, RAD51, has not been fully characterized in vivo and its inactivation is not linked to cancer predisposition, highlighting the RAD51 paradox. Mouse models can be valuable for developing targeted cancer therapies and understanding the mechanisms of HR inactivation-driven tumorigenesis in vivo.
Simple Summary Homologous recombination (HR) is a DNA repair pathway essential to genome stability and mutations in many HR genes are correlated with cancer predisposition. Transgenic mouse models are critical to establish HR factors as tumor suppressor genes. However, investigating the effects of suppressing HR genes in vivo is challenging because invalidation of most of them leads to embryonic lethality in mammals. To tackle this issue, elaborated alternative strategies have been developed. Here we review these alternative HR-defective mouse models and reveal the impact of HR defects on tumorigenesis. We highlight that the central HR factor, RAD51, has yet to be well characterized in vivo and, unlike most HR factors, its inactivation has not been associated with cancer predisposition, revealing what we call the RAD51 paradox. Finally, we discuss the use of mouse models to develop targeted cancer therapies as well as to understand the mechanisms of HR inactivation-driven tumorigenesis in vivo. Homologous recombination (HR) is a fundamental evolutionarily conserved process that plays prime role(s) in genome stability maintenance through DNA repair and through the protection and resumption of arrested replication forks. Many HR genes are deregulated in cancer cells. Notably, the breast cancer genes BRCA1 and BRCA2, two important HR players, are the most frequently mutated genes in familial breast and ovarian cancer. Transgenic mice constitute powerful tools to unravel the intricate mechanisms controlling tumorigenesis in vivo. However, the genes central to HR are essential in mammals, and their knockout leads to early embryonic lethality in mice. Elaborated strategies have been developed to overcome this difficulty, enabling one to analyze the consequences of HR disruption in vivo. In this review, we first briefly present the molecular mechanisms of HR in mammalian cells to introduce each factor in the HR process. Then, we present the different mouse models of HR invalidation and the consequences of HR inactivation on tumorigenesis. Finally, we discuss the use of mouse models for the development of targeted cancer therapies as well as perspectives on the future potential for understanding the mechanisms of HR inactivation-driven tumorigenesis in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available