4.8 Review

Nanofluidics for osmotic energy conversion

Journal

NATURE REVIEWS MATERIALS
Volume 6, Issue 7, Pages 622-639

Publisher

NATURE RESEARCH
DOI: 10.1038/s41578-021-00300-4

Keywords

-

Funding

  1. National Key R&D Program of China [2017YFA0206904, 2017YFA0206900]
  2. National Natural Science Foundation [21625303, 21905287, 21988102]
  3. Alexander von Humboldt Foundation

Ask authors/readers for more resources

This review discusses nanofluidics-based osmotic energy conversion systems, exploring ion diffusion principles in nanofluidic systems, optimization of membrane architectures for increased energy conversion, and potential integration with other technologies such as water splitting.
The osmotic pressure difference between river water and seawater is a promising source of renewable energy. However, current osmotic energy conversion processes show limited power output, mainly owing to the low performance of commercial ion-exchange membranes. Nanofluidic channels with tailored ion transport dynamics enable high-performance reverse electrodialysis to efficiently harvest renewable osmotic energy. In this Review, we discuss ion diffusion through nanofluidic channels and investigate the rational design and optimization of advanced membrane architectures. We highlight how the structure and charge distribution can be tailored to minimize resistance and promote energy conversion, and examine the possibility of integrating nanofluidic osmotic energy conversion with other technologies, such as desalination and water splitting. Finally, we give an outlook to future applications and discuss challenges that need to be overcome to enable large-scale, real-world applications. Osmotic energy conversion is a promising renewable energy source. This Review discusses nanofluidics-based osmotic energy conversion systems, investigating the principles of ion diffusion in nanofluidic systems, optimization of membrane architectures to increase energy conversion and possible integration with other technologies, such as water splitting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available