4.7 Article

The evaluation of the antidiabetic effects of red wine polyphenols with the view of in silico prediction methods

Journal

FOOD BIOSCIENCE
Volume 40, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.fbio.2021.100920

Keywords

Network pharmacology; Red wine; Diabetes mellitus; Polyphenol; Resveratrol; Target prediction

Ask authors/readers for more resources

Moderate red wine consumption has shown to decrease the risk of cardiovascular diseases and have beneficial effects on patients with type 2 diabetes mellitus. This study analyzed 116 red wine compounds with a polyphenolic structure using network pharmacology, and identified key compounds that target AKT1, STAT3, and IL6.
Moderate red wine consumption has been shown to decrease the risk of cardiovascular diseases and beneficial effects on lipid metabolism and patients with type 2 diabetes mellitus (T2DM). Though there were studies on the antidiabetic effects of polyphenols, in this study we evaluated the red wine polyphenols holistically and analyzed by network pharmacology with the basis of multicomponent-multitarget paradigm. 116 compounds with a polyphenolic structure determined in red wine were listed in this study. Compounds were filtered due to their bioavailability scores and 43 compounds that met the selection criteria were further searched for their targets. The study was conducted by constructing three subgroups. These subgroups include i) all polyphenols (SG1), ii) all polyphenols except t-resveratrol (SG2), and iii) t-resveratrol (SG3). Compound-Target network of SG1, SG2, and SG3 was merged with Disease-Target network. These common targets were subjected to DAVID database. The KEGG pathway enrichment analysis showed enrichment for FOXO signaling pathway, insulin resistance, TNF signaling pathway, PI3K-AKT signaling pathway, and HIF-1 signaling pathway that were related to T2DM. The key targets were defined as AKT1, STAT3, and IL6 using protein-protein interaction network. All 43 compounds were tested for their binding abilities to the key targets. Catechin gallate, (-)-epicatechin 3-O-gallate, rosmarinic acid, piceatannol 3'-O-glucoside, apigenin, ellagic acid, delta-viniferin, and t-resveratrol were found as prominent compounds in molecular docking studies. Our findings suggested that polyphenols in red wine could make improvements in glucose metabolism through FOXO and PI3K-AKT signaling pathway and could be protective against type 2 diabetes related complications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available