4.7 Article

Inverse vulcanization of bismaleimide and divinylbenzene by elemental sulfur for lithium sulfur batteries

Journal

EUROPEAN POLYMER JOURNAL
Volume 80, Issue -, Pages 70-77

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eurpolymj.2016.05.007

Keywords

Li-S battery; Elemental sulfur; Bismaleimide; Polysulfide

Funding

  1. Istanbul Technical University

Ask authors/readers for more resources

A novel approach to fabricate sulfur rich thermosets as materials for Li-S batteries is described. For this purpose, polybismaleimide copolymers were synthesized by reacting bismaleimide (BMI) monomer and elemental sulfur at 180 degrees C. Parameters such as monomers and feed ratios on the polymerization were studied. Divinylbenzenes were also used in the formulation to increase sulfur feed ratios up to 70 wt%. The thermal stability of the copolymers was also investigated by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). BMI based copolymers had shown excellent thermal stability and yielded up to 40% char yield at 800 degrees C. The obtained insoluble copolymers were used in Li-S battery applications. Thus, galvanostatic discharge-charge experiments were carried out to evaluate the electrochemical performance of these materials. Both 30% sulfur containing, poly(S-BMI)30%, and 70% sulfur containing, Poly(S-BMI-DVB)70%, composites exhibited a staircase voltage profile which is typical for Li-S batteries. These materials, as Li-S battery cathodes, demonstrated around 400 mA h/g specific capacities at 50 cycles. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available