4.6 Article

Evolution of Organic Aerosol From Wood Smoke Influenced by Burning Phase and Solar Radiation

Journal

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2021JD034534

Keywords

Biomass burning; Combustion phases; Plume evolution; Secondary organic aerosols

Funding

  1. National Key Research and Development Program of China [2016YFA0602001, 2016YFA0602002]
  2. National Natural Science Foundation of China [41875167, 41975177]
  3. Beijing Natural Science Foundation [8192021]

Ask authors/readers for more resources

The study investigated the evolution of plumes from wood burning in real atmospheric conditions, finding that smoldering plumes produce secondary organic aerosols at a faster rate compared to flaming plumes, with a higher oxygen-to-carbon ratio. Flaming plumes had higher emissions of black carbon and NOx, while smoldering plumes were dominated by organic aerosol and had lower NOx emissions, resulting in contrasting trends in the oxidation of organic aerosols.
Emissions of carbonaceous aerosols (black carbon [BC] and organic aerosol [OA]) from biomass burning have important climate and human health impacts. Not only the primary emissions are complicated by combustion phases, but also the evolution after emission is not well understood. In this study, single plumes from residential wood burning, extracted from either flaming or smoldering phase, were injected into our novel chamber, to investigate their evolution in real atmospheric conditions with or without solar radiation. Initial compositions of flaming or smoldering plumes were dominated by BC or OA respectively, with higher NOx emission in flaming. Replicable results showed that in light, smoldering plumes had faster secondary OA (SOA) formation than flaming, due to the higher emissions of volatile organic compounds in smoldering. Furanic and carboxylic acid compounds were found to be the main gaseous precursors and products, respectively. Evaporation and photooxidation concurrently caused increased oxidation in the beginning, but at a later stage of evolution, SOA evolution showed remarkable divergence: enhanced oxidation for smoldering but decreased for flaming plumes, leading to a higher oxygen-to-carbon ratio for smoldering than flaming up to 0.25. We found the higher NOx emission in flaming promoted the gaseous fragmentation reactions, while the seeding particles dominated by OA in smoldering may cause these contrasting tendencies of OA oxidation between combustion phases. Distinct particulate/gas emissions and resultant evolutions in producing SOA at different combustion phases should be therefore considered in evaluating the impacts of biomass burning emissions. Key Points The evolution of plumes from wood smoke was simulated in a novel chamber under real-atmosphere conditions Produced secondary organic aerosols after evolution showed a higher oxidation state from flaming than smoldering combustion phase Higher emissions of black carbon and NOx in flaming while organic aerosol (OA) dominated and low NOx in smoldering may cause contrasting tendencies of OA oxidation

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available