4.7 Article

Whole-genome sequencing reveals rare off-target mutations in CRISPR/Cas9-edited grapevine

Journal

HORTICULTURE RESEARCH
Volume 8, Issue 1, Pages -

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1038/s41438-021-00549-4

Keywords

-

Funding

  1. National Natural Science Foundation of China [U1603234, 31572110, 32002000]
  2. Program for Innovative Research Team of Grape Germplasm Resources and Breeding [2013KCT-25]

Ask authors/readers for more resources

The study on the specificity of CRISPR/Cas9 in grapevine revealed high specificity in genome editing, with a low off-target mutation rate confirmed.
The CRISPR (clustered regularly interspaced short palindromic repeats)-associated protein 9 (Cas9) system is a powerful tool for targeted genome editing, with applications that include plant biotechnology and functional genomics research. However, the specificity of Cas9 targeting is poorly investigated in many plant species, including fruit trees. To assess the off-target mutation rate in grapevine (Vitis vinifera), we performed whole-genome sequencing (WGS) of seven Cas9-edited grapevine plants in which one of two genes was targeted by CRISPR/Cas9 and three wild-type (WT) plants. In total, we identified between 202,008 and 272,397 single nucleotide polymorphisms (SNPs) and between 26,391 and 55,414 insertions/deletions (indels) in the seven Cas9-edited grapevine plants compared with the three WT plants. Subsequently, 3272 potential off-target sites were selected for further analysis. Only one off-target indel mutation was identified from the WGS data and validated by Sanger sequencing. In addition, we found 243 newly generated off-target sites caused by genetic variants between the Thompson Seedless cultivar and the grape reference genome (PN40024) but no true off-target mutations. In conclusion, we observed high specificity of CRISPR/Cas9 for genome editing of grapevine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available