4.6 Article

Complex RNA Secondary Structures Mediate Mutually Exclusive Splicing of Coleoptera Dscam1

Journal

FRONTIERS IN GENETICS
Volume 12, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fgene.2021.644238

Keywords

clade-specific; Coleoptera; mechanism; RNA secondary structure; Dscam1; alternative splicing

Funding

  1. National Natural Science Foundation of China [91940303, 31630089, 91740104]
  2. Natural Science Foundation of Zhejiang Province [LD21C050002]

Ask authors/readers for more resources

Our study identified evidence of evolutionarily conserved RNA base pairings mediating mutually exclusive splicing in the exon 4 cluster of Dscam1 in Coleoptera species. In contrast to fly species, most exon 6 selector sequences are partially located in the variable exon region in Coleoptera species. Additionally, bidirectional RNA-RNA interactions were predicted to regulate mutually exclusive splicing of variable exon 9 of Dscam1.
Mutually exclusive splicing is an important mechanism for expanding protein diversity. An extreme example is the Down syndrome cell adhesion molecular (Dscam1) gene of insects, containing four clusters of variable exons (exons 4, 6, 9, and 17), which potentially generates tens of thousands of protein isoforms through mutually exclusive splicing, of which regulatory mechanisms are still elusive. Here, we systematically analyzed the variable exon 4, 6, and 9 clusters of Dscam1 in Coleoptera species. Through comparative genomics and RNA secondary structure prediction, we found apparent evidence that the evolutionarily conserved RNA base pairing mediates mutually exclusive splicing in the Dscam1 exon 4 cluster. In contrast to the fly exon 6, most exon 6 selector sequences in Coleoptera species are partially located in the variable exon region. Besides, bidirectional RNA-RNA interactions are predicted to regulate the mutually exclusive splicing of variable exon 9 of Dscam1. Although the docking sites in exon 4 and 9 clusters are clade specific, the docking sites-selector base pairing is conserved in secondary structure level. In short, our result provided a mechanistic framework for the application of long-range RNA base pairings in regulating the mutually exclusive splicing of Coleoptera Dscam1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available