4.7 Article

Design and modeling of bamboo biomorphic structure for in-plane energy absorption improvement

Journal

MATERIALS & DESIGN
Volume 205, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2021.109736

Keywords

Bamboo biomorphic structure; Functionally graded cellular structure; Biomimetics; Energy absorption; Honeycomb; Additive manufacturing

Ask authors/readers for more resources

The study introduces a biomorphic structure BBS inspired by the microstructure of bamboo, manufactured using FFF technology, which can efficiently absorb impact energy. This parametric design has the potential for large-scale manufacturing of energy-absorbing engineering structures.
Bamboo cell wall exhibits a microscopically graded architecture, and micro-layer distributed cells around individual cell walls, which leads to the preferred mechanical properties of bamboo for impact loading. This work proposes a cellular structure, as called Bamboo Biomorphic Structure (BBS), which is a functionally graded honeycomb cellular structure inspired by the microstructure of bamboo and manufactured using fused filament fabrication (FFF). It is hypothesized that, by introducing bamboo biomorphic micro-unit cells, including a range of thickness step differences within an individual honeycomb unit cell, the successive stages of deformation of the honeycomb structure can be controlled, making the system absorb impact energy more efficiently. Characterization of the designed structures was conducted under in-plane quasi-static loading conditions, and then evaluated using a nonlinear finite element commercial code LS-DYNA. The proposed gradient BBS showed higher absorbed impact energies by four times compared with the conventional Honeycomb structure. The proposed parametric design would aid engineering design principles for the development of a novel biomorphic cellular structure, which has the potential for large-scale manufacturing of efficient energy-absorbing engineering structures. Such an energy-absorbing structure can help improve the lightweight structure design for various applications, including automobiles and aircrafts, while ensuring safety under impact load. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available