4.7 Article

Allosteric Antagonist Modulation of TRPV2 by Piperlongumine Impairs Glioblastoma Progression

Journal

ACS CENTRAL SCIENCE
Volume 7, Issue 5, Pages 868-881

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscentsci.1c00070

Keywords

-

Funding

  1. National Institute of Health [R01GM103899, R01GM129357]
  2. FCT Portugal [IF/00624/2015, IF/01693/2014, IF/00595/2014, CEECIND/00436/2018, SFRH/BD/143583/2019, PD/BD/128289/2017, SFRH/BPD/1187731/2016]
  3. Agencia Estatal Investigacion of Spain (AEI) [RTI-2018-099592-B-C21]
  4. EMBO [3057]
  5. Medical Research Council [MR/N010051/1]
  6. European Union's Horizon 2020 research and innovation programme [630731, 675007, 807281, 743640]
  7. Marie Curie Actions (MSCA) [743640] Funding Source: Marie Curie Actions (MSCA)
  8. MRC [MR/N010051/1] Funding Source: UKRI
  9. Fundação para a Ciência e a Tecnologia [SFRH/BD/143583/2019, PD/BD/128289/2017] Funding Source: FCT

Ask authors/readers for more resources

The study investigated the regulation of piperlongumine (PL) on the human transient receptor potential vanilloid 2 (hTRPV2) channel and its mechanism of action in combating glioblastoma. Experimental results demonstrated that PL affects the activity of hTRPV2 channel in a specific way, effectively reducing malignant cells in GBM tumors. Further research found that PL also exhibits selective cytotoxicity towards malignant cells in samples derived from GBM patients.
The use of computational tools to identify biological targets of natural products with anticancer properties and unknown modes of action is gaining momentum. We employed self-organizing maps to deconvolute the phenotypic effects of piperlongumine (PL) and establish a link to modulation of the human transient receptor potential vanilloid 2 (hTRPV2) channel. The structure of the PL-bound full-length rat TRPV2 channel was determined by cryo-EM. PL binds to a transient allosteric pocket responsible for a new mode of anticancer activity against glioblastoma (GBM) in which hTRPV2 is overexpressed. Calcium imaging experiments revealed the importance of Arg539 and Thr522 residues on the antagonistic effect of PL and calcium influx modulation of the TRPV2 channel. Downregulation of hTRPV2 reduces sensitivity to PL and decreases ROS production. Analysis of GBM patient samples associates hTRPV2 overexpression with tumor grade, disease progression, and poor prognosis. Extensive tumor abrogation and long term survival was achieved in two murine models of orthotopic GBM by formulating PL in an implantable scaffold/hydrogel for sustained local therapy. Furthermore, in primary tumor samples derived from GBM patients, we observed a selective reduction of malignant cells in response to PL ex vivo. Our results establish a broadly applicable strategy, leveraging data-motivated research hypotheses for the discovery of novel means tackling cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available