4.6 Review

High-entropy ceramics: Present status, challenges, and a look forward

Journal

JOURNAL OF ADVANCED CERAMICS
Volume 10, Issue 3, Pages 385-441

Publisher

SPRINGER
DOI: 10.1007/s40145-021-0477-y

Keywords

high-entropy ceramics (HECs); processing; structure; properties; applications

Funding

  1. National Natural Science Foundation of China [51972089, 51672064, U1435206]

Ask authors/readers for more resources

High-entropy ceramics are solid solutions of inorganic compounds with diverse crystal and electronic structures, providing large space for property tuning through band structure and phonon engineering. In addition to traditional strengthening, hardening, and low thermal conductivity, HECs exhibit new properties such as colossal dielectric constant and super ionic conductivity. Challenges in processing, characterization, and property predictions are highlighted, along with future directions for material exploration and in-depth characterization.
High-entropy ceramics (HECs) are solid solutions of inorganic compounds with one or more Wyckoff sites shared by equal or near-equal atomic ratios of multi-principal elements. Although in the infant stage, the emerging of this new family of materials has brought new opportunities for material design and property tailoring. Distinct from metals, the diversity in crystal structure and electronic structure of ceramics provides huge space for properties tuning through band structure engineering and phonon engineering. Aside from strengthening, hardening, and low thermal conductivity that have already been found in high-entropy alloys, new properties like colossal dielectric constant, super ionic conductivity, severe anisotropic thermal expansion coefficient, strong electromagnetic wave absorption, etc., have been discovered in HECs. As a response to the rapid development in this nascent field, this article gives a comprehensive review on the structure features, theoretical methods for stability and property prediction, processing routes, novel properties, and prospective applications of HECs. The challenges on processing, characterization, and property predictions are also emphasized. Finally, future directions for new material exploration, novel processing, fundamental understanding, in-depth characterization, and database assessments are given.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available