4.6 Article

Application of simulation modeling for wildfire exposure and transmission assessment in Sardinia, Italy

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.ijdrr.2021.102189

Keywords

Wildfire modeling; Burn probability; MTT algorithm; Wildfire management; Mediterranean areas

Funding

  1. European Union under the cross-border Programma Italia-Francia Marittimo [E88H19000120007, B85I1900010007, B81I1900010007]
  2. Italian Ministry of Education, University and Research (MIUR) [856/19]

Ask authors/readers for more resources

This study utilized simulation modeling to analyze wildfire exposure and risk transmission in Sardinia, Italy, providing a novel quantitative approach for wildfire risk management and planning in Mediterranean areas.
The development of comprehensive fire management and risk assessment strategies is of prominent concern in Southern Europe, due to the expanding scale of wildfire risk. In this work, we applied simulation modeling to analyze fine-scale (100-m resolution) wildfire exposure and risk transmission in the 24,000 km2 island of Sardinia (Italy). Sardinia contains a variety of ecological, cultural, anthropic and touristic resources that each summer are threatened by wildfires, and represents well the Mediterranean Basin environments and conditions. Wildfire simulations based on the minimum travel time algorithm were used to characterize wildfire exposure and risk transmission in terms of annual burn probability, flame length, structures exposed and type and amount of transmission. We focused on the historical conditions associated with large (>50 ha) and very large (>200 ha) wildfires that occurred in Sardinia in the period 1998-2016, and combined outputs from wildfire simulation modeling with land uses, building footprint locations, weather, and historical ignition data. The outputs were summarized for weather zones, main wind scenarios and land uses. Our study characterized spatial variations in wildfire spread, exposure and risk transmission among and within weather zones and the main winds associated with large events. This work provides a novel quantitative approach to inform wildfire risk management and planning in Mediterranean areas. The proposed methodology can serve as reference for wildfire risk assessment and can be replicated elsewhere. Findings can be used to better understand the spatial dynamics and patterns of wildfire risk and evaluate expected wildfire behavior or transmission potential in Sardinia and neighboring regions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available