4.6 Article

Enzymatic Synthesis of Glucose Fatty Acid Esters Using SCOs as Acyl Group-Donors and Their Biological Activities

Journal

APPLIED SCIENCES-BASEL
Volume 11, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/app11062700

Keywords

immobilized lipases; microbial oils; fatty acid methyl esters; glucose esters synthesis; antimicrobial; insecticidal; anticancer activity

Funding

  1. University of Jeddah, Saudi Arabia [UJ-06-18-ICP]

Ask authors/readers for more resources

Sugar fatty acid esters, especially glucose fatty acid esters (GEs), have broad applications in food, cosmetic, and pharmaceutical industries. In this research, fatty acid moieties derived from polyunsaturated fatty acids containing single-cell oils were converted into GEs by enzymatic synthesis using lipases as biocatalysts. The synthesized GEs showed various biological activities, such as antimicrobial and insecticidal properties, as well as the induction of apoptosis in ovarian cancer cells. The study indicates the potential use of single-cell oils in the synthesis of GEs with beneficial biological properties.
Sugar fatty acid esters, especially glucose fatty acid esters (GEs), have broad applications in food, cosmetic and pharmaceutical industries. In this research, the fatty acid moieties derived from polyunsaturated fatty acids containing single-cell oils (SCOs) (i.e., those produced from Cunninghamella echinulata, Umbelopsis isabellina and Nannochloropsis gaditana, as well as from olive oil and an eicosapentaenoic acid (EPA) concentrate) were converted into GEs by enzymatic synthesis, using lipases as biocatalysts. The GE synthesis was monitored using thin-layer chromatography, FTIR and in situ NMR. It was found that GE synthesis carried out using immobilized Candida antarctica B lipase was very effective, reaching total conversion of reactants. It was shown that EPA-GEs were very effective against several pathogenic bacteria and their activity can be attributed to their high EPA content. Furthermore, C. echinulata-GEs were more effective against pathogens compared with U. isabellina-GEs, probably due to the presence of gamma linolenic acid (GLA) in the lipids of C. echinulata, which is known for its antimicrobial activity, in higher concentrations. C. echinulata-GEs also showed strong insecticidal activity against Aedes aegypti larvae, followed by EPA-GEs, olive oil-GEs and N. gaditana-GEs. All synthesized GEs induced apoptosis of the SKOV-3 ovarian cancer cell line, with the apoptotic rate increasing significantly after 48 h. A higher percentage of apoptosis was observed in the cells treated with EPA-GEs, followed by C. echinulata-GEs, U. isabellina-GEs and olive oil-GEs. We conclude that SCOs can be used in the synthesis of GEs with interesting biological properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available