4.6 Article

Antifungal properties of volatile organic compounds produced by Daldinia eschscholtzii MFLUCC 19-0493 isolated from Barleria prionitis leaves against Colletotrichum acutatum and its post-harvest infections on strawberry fruits

Journal

PEERJ
Volume 9, Issue -, Pages -

Publisher

PEERJ INC
DOI: 10.7717/peerj.11242

Keywords

Anthracnose; Barleria prionitis; Biocontrol; Colletotrichum acutatum; Fungal endophyte; Strawberry

Funding

  1. Mae Fah Luang University
  2. Royal Golden Jubilee Ph.D. Programme [PHD/0193/2560]

Ask authors/readers for more resources

The study aimed to isolate endophytic fungi from Barleria prionitis plants in Thailand and investigate the antifungal properties of their VOCs against Colletotrichum acutatum. A total of 34 endophytic fungi were isolated, with one isolate BP11 showing the highest inhibition percentage of 80.3% against C. acutatum. Identified as Daldinia eschscholtzii MFLUCC 19-0493, this endophytic fungi was selected for in vivo experiments, where its VOCs exhibited an average inhibition percentage of 72.4% against C. acutatum on organic fresh strawberry fruits.
Fungal endophytes are microorganisms living symbiotically with a host plant. They can produce volatile organic compounds (VOCs) that have antimicrobial activity. This study aimed to isolate endophytic fungi from Barleria prionitis plants grown in Thailand and to investigate the antifungal properties of their VOCs against Colletotrichum acutatum, a causal agent of anthracnose disease on post-harvest strawberry fruits. A total of 34 endophytic fungi were isolated from leaves of B. prionitis. The VOCs produced from each individual isolate were screened for their antifungal activity against C. acutatum using a dual-culture plate method. From this in vitro screening experiment, the VOCs produced by the endophytic isolate BP11 were found to have the highest inhibition percentage (80.3%) against the mycelial growth of C. acutatum. The endophytic isolate BP11 was molecularly identified as Daldinia eschscholtzii MFLUCC 19-0493. This strain was then selected for an in vivo experiment. Results from the in vivo experiment indicated that the VOCs produced by D. eschscholtzii MFLUCC 19-0493 were able to inhibit infections by C. acutatum on organic fresh strawberry fruits with an average inhibition percentage of 72.4%. The quality of the pathogen-inoculated strawberry fruits treated with VOCs produced by D. eschscholtzii MFLUCC 19-0493 was evaluated. Their fruit firmness, total soluble solids, and pH were found to be similar to the untreated strawberry fruits. Solid phase microextraction-gas chromatographicmass spectrometric analysis of the VOCs produced by D. eschscholtzii MFLUCC 190493 led to the detection and identification of 60 compounds. The major compounds were elemicin (23.8%), benzaldehyde dimethyl acetal (8.5%), ethyl sorbate (6.8%), methyl geranate (6.5%), trans-sabinene hydrate (5.4%), and 3,5-dimethyl-4-heptanone (5.1%). Each major compound was tested for its antifungal activity against C. acutatum using the in vitro assay. While all these selected VOCs showed varying degrees of antifungal activity, elemicin was found to possess the strongest antifungal activity. This work suggests that D. eschscholtzii MFLUCC 19-0493 could be a promising natural preservative for controlling C. acutatum associated anthracnose disease in strawberry fruits during the post-harvest period.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available