4.7 Article

Dynamics of Stress-Driven Two-Phase Elastic Beams

Journal

NANOMATERIALS
Volume 11, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/nano11051138

Keywords

free vibrations; nanostructures; size effects; stress-driven mixture model; integral elasticity; MEMS; NEMS

Funding

  1. MIUR of the University of Naples Federico II Research Unit [2017J4EAYB]

Ask authors/readers for more resources

The dynamic behavior of micro- and nano-beams is investigated using nonlocal continuum mechanics, with size effects modeled by expressing elastic curvatures in terms of stress-driven local and nonlocal phases. Relevant nonlocal equations of motion for slender beams are formulated and integrated using an analytical approach. The presented strategy is applied to simple case problems of nanotechnological interest, and the validation of the proposed nonlocal methodology is provided by comparing natural frequencies with those obtained by the classical strain gradient model of elasticity. Overall, the outcomes obtained can be useful for the design and optimization of micro- and nano-electro-mechanical systems (M/NEMS).
The dynamic behaviour of micro- and nano-beams is investigated by the nonlocal continuum mechanics, a computationally convenient approach with respect to atomistic strategies. Specifically, size effects are modelled by expressing elastic curvatures in terms of the integral mixture of stress-driven local and nonlocal phases, which leads to well-posed structural problems. Relevant nonlocal equations of the motion of slender beams are formulated and integrated by an analytical approach. The presented strategy is applied to simple case-problems of nanotechnological interest. Validation of the proposed nonlocal methodology is provided by comparing natural frequencies with the ones obtained by the classical strain gradient model of elasticity. The obtained outcomes can be useful for the design and optimisation of micro- and nano-electro-mechanical systems (M/NEMS).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available