4.6 Article

Influence of Acidified Biochar on CO2-C Efflux and Micronutrient Availability in an Alkaline Sandy Soil

Journal

SUSTAINABILITY
Volume 13, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/su13095196

Keywords

biochar; alkaline sandy soil; acidified biochar; CO2– C efflux; micronutrients

Funding

  1. Ministry of Education-Kingdom of Saudi Arabia [IFKSURG-1439-043]

Ask authors/readers for more resources

The study found that acidified biochar can improve the availability of micronutrients in alkaline soils, and biochar produced at higher temperatures can reduce CO2 emissions from soil carbon sequestration.
Biochar, an alkaline carbonaceous substance resulting from the thermal pyrolysis of biomass, reportedly enhances the micronutrient availability in acidic soils with little or no effect on alkaline soils. In this study, biochars were produced from poultry manure (PM) at 350 degrees C and 550 degrees C (BC350 and BC550 respectively). The acidified biochars (ABC350 and ABC550, respectively) were incorporated into an alkaline sandy soil, and their effects on the soil micronutrients (Cu, Fe, Mn and Zn) availability, and CO2-C efflux were investigated in a 30-day incubation study. The treatments (PM, BC350, BC550, ABC350, and ABC550) were administered in triplicate to 100 g soil at 0%, 1%, and 3% (w/w). Relative to the poultry manure treatment, acidification drastically reduced the pH of BC350 and BC550 by 3.13 and 4.28 units, respectively, and increased the micronutrient availability of the studied soil. Furthermore, the biochars (both non-acidified and acidified) reduced the CO2 emission compared to that of the poultry manure treatment. After 1% treatment with BC550 and ABC550, the CO2 emissions from the soil were 89.6% and 91.4% lower, respectively, than in the 1% poultry manure treatment. In summary, acidified biochar improved the micronutrient availability in alkaline soil, and when produced at higher temperature, can mitigate the CO2 emissions of soil carbon sequestration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available