4.8 Article

Ultrastable low-cost colloidal quantum dot microlasers of operative temperature up to 450 K

Journal

LIGHT-SCIENCE & APPLICATIONS
Volume 10, Issue 1, Pages -

Publisher

SPRINGERNATURE
DOI: 10.1038/s41377-021-00508-7

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [61875256, 61925506, 11674097, 51525202, U19A2090]
  2. Natural Science Foundation of Shanghai [20JC1414605]
  3. Key Program of the Hunan Provincial Science and Technology Department [2019XK2001]

Ask authors/readers for more resources

Quantum dot microlasers are crucial for various applications, but achieving high-performance low-cost CQD micro/nanolasers has been a challenge. Researchers have addressed core issues through self-aggregation and solidification techniques.
Quantum dot microlasers, as multifunctional optical source components, are of great importance for full-color highpixel display, miniaturized coherent lighting, and on-chip integrated photonic and electronic circuits. Since the first synthesis of colloidal quantum dots (CQD) in the 1990s, motivation to realize high-performance low-cost CQD micro-/nanolasers has been a driving force for more than three decades. However, the low packing density, inefficient coupling of CQDs with optical cavities, and the poor thermal stability of miniaturized complex systems make it challenging to achieve practical CQD micro-/nanolasers, especially to combine the continuous working ability at high temperatures and the low-cost potential with mass-produced synthesis technologies. Herein, we developed closepacked CQD-assembled microspheres and embedded them in a silica matrix through the rapid self-aggregation and solidification of CdSe/ZnS CQD. This technology addresses the core issues of photoluminescence (PL) quenching effect and low optical gain in traditional CQD laser research. High-efficiency low-threshold CQD microlasers are demonstrated together with long-playing (40 min) working stability even at 450 K under pulsed laser excitation, which is the highest operational temperature for CQD lasers. Moreover, single-mode CQD microlasers are obtained with tunable wavelengths across the entire visible spectral range. The chemosynthesis process supports the mass-produced potential of high-density integrated CQD microlasers, promoting CQD-based low-cost high-temperature microdevices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available