4.6 Article

Boosting overall water splitting by incorporating sulfur into NiFe (oxy) hydroxide

Journal

JOURNAL OF ENERGY CHEMISTRY
Volume 64, Issue -, Pages 364-371

Publisher

ELSEVIER
DOI: 10.1016/j.jechem.2021.04.067

Keywords

Overall water splitting; Hydrogen production; Sulfur incorporated NiFe (oxy)hydroxide; Electrocatalysts; Solar-driven water splitting

Funding

  1. Basic Science Research Pro-gram through the National Research Foundation of Korea (NRF) - Ministry of Education [NRF2016R1D1A3B04935101]

Ask authors/readers for more resources

The study developed sulfur-incorporated nickel iron (oxy)hydroxide nanosheets as a bifunctional electrocatalyst, which exhibited enhanced catalytic activity for the hydrogen evolution reaction and oxygen evolution reaction in alkaline electrolyte. This material showed promising potential for large-scale industrial hydrogen production with its low cost, high activity, and durability, as well as the opportunity for developing effective and feasible solar power systems in the future.
Developing highly active and cost-effective electrocatalysts for enhancing the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is a significant challenge for overall water splitting. Sulfur-incorporated nickel iron (oxy)hydroxide (S-NiFeOOH) nanosheets were directly grown on commercial nickel foam using a galvanic corrosion method and a hydrothermal method. The incorporation of sulfur into NiFeOOH enhanced the catalytic activity for the HER and OER in 1 M KOH electrolyte. The enhanced catalytic activity is attributed to the change in the local structure and chemical states due to the incorporation of sulfur. High performance for overall water splitting was achieved with an alkaline water electrolyzer. This was realized by employing S-NiFeOOH as a bifunctional electrocatalyst, thereby outperforming a water electrolyzer that requires the usage of precious metal electrocatalysts (i.e., Pt/C as the HER electrocatalyst and IrO2 as the OER electrocatalyst). Moreover, when driven by a commercial silicon solar cell, an alkaline water electrolyzer that uses S-NiFeOOH as a bifunctional electrocatalyst generated hydrogen under natural illumination. This study shows that S-NiFeOOH is a promising candidate for a large-scale industrial implementation of hydrogen production for overall water splitting because of its low cost, high activity, and durability. In addition, the solar-driven water electrolyzer using S-NiFeOOH as a bifunctional electrocatalyst affords the opportunity for developing effective and feasible solar power systems in the future. (C) 2021 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available