4.7 Article

Melatonin Pretreatment Confers Heat Tolerance and Repression of Heat-Induced Senescence in Tomato Through the Modulation of ABA- and GA-Mediated Pathways

Journal

FRONTIERS IN PLANT SCIENCE
Volume 12, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2021.650955

Keywords

leaf senescence; chlorophyll degradation; high temperature; melatonin; tomato

Categories

Funding

  1. National Natural Science Foundation of China [32072649]
  2. China Earmarked Fund for Modern Agro-Industry Technology Research System [CARS-23-B12]
  3. Jiangsu Province Scientific and Technological Achievements into Special Fund [BE2017701]

Ask authors/readers for more resources

The study showed that melatonin can suppress heat-induced leaf senescence and is closely associated with the interactions between gibberellins and abscisic acid in tomato, thereby coordinating the plant's heat tolerance.
Heat stress and abscisic acid (ABA) induce leaf senescence, whereas melatonin (MT) and gibberellins (GA) play critical roles in inhibiting leaf senescence. Recent research findings confirm that plant tolerance to diverse stresses is closely associated with foliage lifespan. However, the molecular mechanism underlying the signaling interaction of MT with GA and ABA regarding heat-induced leaf senescence largely remains undetermined. Herein, we investigated putative functions of melatonin in suppressing heat-induced leaf senescence in tomato and how ABA and GA coordinate with each other in the presence of MT. Tomato seedlings were pretreated with 100 mu M MT or water and exposed to high temperature (38/28 degrees C) for 5 days (d). Heat stress significantly accelerated senescence, damage to the photosystem and upregulation of reactive oxygen species (ROS), generating RBOH gene expression. Melatonin treatment markedly attenuated heat-induced leaf senescence, as reflected by reduced leaf yellowing, an increased Fv/Fm ratio, and reduced ROS production. The Rbohs gene, chlorophyll catabolic genes, and senescence-associated gene expression levels were significantly suppressed by MT addition. Exogenous application of MT elevated the endogenous MT and GA contents but reduced the ABA content in high-temperature-exposed plants. However, the GA and ABA contents were inhibited by paclobutrazol (PCB, a GA biosynthesis inhibitor) and sodium tungstate (ST, an ABA biosynthesis inhibitor) treatment. MT-induced heat tolerance was compromised in both inhibitor-treated plants. The transcript abundance of ABA biosynthesis and signaling genes was repressed; however, the biosynthesis genes MT and GA were upregulated in MT-treated plants. Moreover, GA signaling suppressor and catabolic gene expression was inhibited, while ABA catabolic gene expression was upregulated by MT application. Taken together, MT-mediated suppression of heat-induced leaf senescence has collaborated with the activation of MT and GA biosynthesis and inhibition of ABA biosynthesis pathways in tomato.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available