4.6 Article

The Molecular Information About Deadwood Bacteriomes Partly Depends on the Targeted Environmental DNA

Journal

FRONTIERS IN MICROBIOLOGY
Volume 12, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2021.640386

Keywords

intracellular DNA; extracellular DNA; environmental DNA; Picea abies; deadwood; microbiome; microbial communities

Categories

Funding

  1. Fonds zur Forderung der wissenschaftlichen Forschung (FWF) Austria [I989-B16]
  2. Programa Ramon y Cajal (Ministerio de Economia y Competitividad) [RYC-2016-21231]

Ask authors/readers for more resources

This study conducted microbiome sequencing of Picea abies deadwood logs, demonstrating differences among three DNA types in terms of bacterial compositions and less abundant amplicon sequence variants. Analysis of intracellular and extracellular DNA fraction increased ecological depth, indicating the potential masking effect of extracellular DNA in the deadwood logs.
Microbiome studies mostly rely on total DNA extracts obtained directly from environmental samples. The total DNA consists of both intra- and extracellular DNA, which differ in terms of their ecological interpretation. In the present study, we have investigated for the first time the differences among the three DNA types using microbiome sequencing of Picea abies deadwood logs (Hunter decay classes I, III, and V). While the bacterial compositions of all DNA types were comparable in terms of more abundant organisms and mainly depended on the decay class, we found substantial differences between DNA types with regard to less abundant amplicon sequence variants (ASVs). The analysis of the sequentially extracted intra- and extracellular DNA fraction, respectively, increased the ecological depth of analysis compared to the directly extracted total DNA pool. Both DNA fractions were comparable in proportions and the extracellular DNA appeared to persist in the P. abies deadwood logs, thereby causing its masking effect. Indeed, the extracellular DNA masked the compositional dynamics of intact cells in the total DNA pool. Our results provide evidence that the choice of DNA type for analysis might benefit a study's answer to its respective ecological question. In the deadwood environment researched here, the differential analysis of the DNA types underlined the relevance of Burkholderiales, Rhizobiales and other taxa for P. abies deadwood decomposition and revealed that the role of Acidobacteriota under this scenario might be underestimated, especially compared to Actinobacteriota.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available