4.7 Article

Multithreading Based Parallel Processing for Image Geometric Coregistration in SAR Interferometry

Journal

REMOTE SENSING
Volume 13, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/rs13101963

Keywords

image coregistration; SAR registration; high performance computing (HPC); parallel processing; multithreading; synthetic aperture radar (SAR); SAR interferometry (InSAR)

Ask authors/readers for more resources

This paper investigates the parallel processing of SAR image geometric coregistration using shared-memory architectures, proposing an efficient and scalable processor with thread-level parallelism. Experimental results demonstrate the potential operational use of the developed parallel processor in large-scale interferometric SAR data processing.
Within the framework of multi-temporal Synthetic Aperture Radar (SAR) interferometric processing, image coregistration is a fundamental operation that might be extremely time-consuming. This paper explores the possibility of addressing fast and accurate SAR image geometric coregistration, with sub-pixel accuracy and in the presence of a complex 3-D object scene, by exploiting the parallelism offered by shared-memory architectures. An efficient and scalable processor is proposed by designing a parallel algorithm incorporating thread-level parallelism for solving the inherent computationally intensive problem. The adopted functional scheme is first mathematically framed and then investigated in detail in terms of its computational structures. Subsequently, a parallel version of the algorithm is designed, according to a fork-join model, by suitably taking into account the granularity of the decomposition, load-balancing, and different scheduling strategies. The developed parallel algorithm implements parallelism at the thread-level by using OpenMP (Open Multi-Processing) and it is specifically targeted at shared-memory multiprocessors. The parallel performance of the implemented multithreading-based SAR image coregistration prototype processor is experimentally investigated and quantitatively assessed by processing high-resolution X-band COSMO-SkyMed SAR data and using two different multicore architectures. The effectiveness of the developed multithreaded prototype solution in fully benefitting from the computing power offered by multicore processors has successfully been demonstrated via a suitable experimental performance analysis conducted in terms of parallel speedup and efficiency. The demonstrated scalable performance and portability of the developed parallel processor confirm its potential for operational use in the interferometric SAR data processing at large scales.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available