4.7 Article

Spatial Downscaling of Land Surface Temperature Based on a Multi-Factor Geographically Weighted Machine Learning Model

Journal

REMOTE SENSING
Volume 13, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/rs13061186

Keywords

land surface temperature; spatial downscaling; geographically weighted regression; ensemble learning; extreme gradient boosting; multivariate adaptive regression splines; Bayesian ridge regression; Sentinel-2A

Funding

  1. National Key R&D Programof China [2017YFB0503902]
  2. National Natural Science Foundation of China [61731022, 61860206004]

Ask authors/readers for more resources

This paper presents a multi-factor geographically weighted machine learning algorithm to downscale 30m LST data retrieved from Landsat 8 images to 10m LST data, outperforming classic algorithms.
Land surface temperature (LST) is a critical parameter of surface energy fluxes and has become the focus of numerous studies. LST downscaling is an effective technique for supplementing the limitations of the coarse-resolution LST data. However, the relationship between LST and other land surface parameters tends to be nonlinear and spatially nonstationary, due to spatial heterogeneity. Nonlinearity and spatial nonstationarity have not been considered simultaneously in previous studies. To address this issue, we propose a multi-factor geographically weighted machine learning (MFGWML) algorithm. MFGWML utilizes three excellent machine learning (ML) algorithms, namely extreme gradient boosting (XGBoost), multivariate adaptive regression splines (MARS), and Bayesian ridge regression (BRR), as base learners to capture the nonlinear relationships. MFGWML uses geographically weighted regression (GWR), which allows for spatial nonstationarity, to fuse the three base learners' predictions. This paper downscales the 30 m LST data retrieved from Landsat 8 images to 10 m LST data mainly based on Sentinel-2A images. The results show that MFGWML outperforms two classic algorithms, namely thermal image sharpening (TsHARP) and the high-resolution urban thermal sharpener (HUTS). We conclude that MFGWML combines the advantages of multiple regression, ML, and GWR, to capture the local heterogeneity and obtain reliable and robust downscaled LST data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available