4.7 Review

Numerical Methods in Studies of Liquid Crystal Elastomers

Journal

POLYMERS
Volume 13, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/polym13101650

Keywords

liquid crystal elastomer; numerical methods; finite element method; Monte Carlo method; molecular dynamics method

Ask authors/readers for more resources

Liquid crystal elastomers (LCEs) are materials with specific properties that can change physical characteristics when exposed to external stimuli, making them suitable for various applications. Numerical models are necessary for better understanding and predicting their behavior in different scenarios.
Liquid crystal elastomers (LCEs) are a type of material with specific features of polymers and of liquid crystals. They exhibit interesting behaviors, i.e., they are able to change their physical properties when met with external stimuli, including heat, light, electric, and magnetic fields. This behavior makes LCEs a suitable candidate for a variety of applications, including, but not limited to, artificial muscles, optical devices, microscopy and imaging systems, biosensor devices, and optimization of solar energy collectors. Due to the wide range of applicability, numerical models are needed not only to further our understanding of the underlining mechanics governing LCE behavior, but also to enable the predictive modeling of their behavior under different circumstances for different applications. Given that several mainstream methods are used for LCE modeling, viz. finite element method, Monte Carlo and molecular dynamics, and the growing interest and reliance on computer modeling for predicting the opto-mechanical behavior of complex structures in real world applications, there is a need to gain a better understanding regarding their strengths and weaknesses so that the best method can be utilized for the specific application at hand. Therefore, this investigation aims to not only to present a multitude of examples on numerical studies conducted on LCEs, but also attempts at offering a concise categorization of different methods based on the desired application to act as a guide for current and future research in this field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available