4.7 Article

Development of Epirubicin-Loaded Biocompatible Polymer PLA-PEG-PLA Nanoparticles: Synthesis, Characterization, Stability, and In Vitro Anticancerous Assessment

Journal

POLYMERS
Volume 13, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/polym13081212

Keywords

epirubicin; biocompatible; polymers; nanoparticles; stability studies; sustained release; double emulsion

Funding

  1. King AbdulAziz City for Science and Technology (KACST), through the Therapy Development Research Project (TDRP)

Ask authors/readers for more resources

Epirubicin nanoparticles (EPI-NPs) were successfully prepared using a biocompatible polymer, showing significant apoptotic activity on cancer cells and good stability over 30 days under physiological conditions. The study demonstrates the potential of EPI-NPs as a safe and effective treatment for cancer with reduced side effects.
Epirubicin (EPI) is an anti-cancerous chemotherapeutic drug that is an effective epimer of doxorubicin with less cardiotoxicity. Although EPI has fewer side effects than its analog, doxorubicin, this study aims to develop EPI nanoparticles as an improved formula of the conventional treatment of EPI in its free form. Methods: In this study, EPI-loaded polymeric nanoparticles (EPI-NPs) were prepared by the double emulsion method using a biocompatible poly (lactide) poly (ethylene glycol) poly(lactide) (PLA-PEG-PLA) polymer. The physicochemical properties of the EPI-NPs were determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), entrapment efficiency and stability studies. The effect of EPI-NPs on cancer cells was determined by high throughput imaging and flow cytometry. Results: The synthesis process resulted in monodisperse EPI-NPs with a size of 166.93 +/- 1.40 nm and an elevated encapsulation efficiency (EE) of 88.3%. In addition, TEM images revealed the spherical uniformness of EPI-NPs with no aggregation, while the cellular studies presented the effect of EPI-NPs on MCF-7 cells' viability; after 96 h of treatment, the MCF-7 cells presented considerable apoptotic activity. The stability study showed that the EPI-NPs remained stable at room temperature at physiological pH for over 30 days. Conclusion: EPI-NPs were successfully encapsulated within a highly stable biocompatible polymer with minimal loss of the drug. The used polymer has low cytotoxicity and EPI-NPs induced apoptosis in estrogen-positive cell line, making them a promising, safe treatment for cancer with less adverse side effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available