4.6 Article

Doublesex regulates fruitless expression to promote sexual dimorphism of the gonad stem cell niche

Journal

PLOS GENETICS
Volume 17, Issue 3, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1009468

Keywords

-

Funding

  1. NIH NIGMS [GM084356, GM113001]
  2. NSF [DGE1746891]

Ask authors/readers for more resources

The study shows that in Drosophila, the fruitless (fru) gene not only controls sex-specific development outside the nervous system, but its sex-specific expression can also be regulated by Dsx, providing a new mechanism for fru regulation.
Author summary In animals, the process of sex determination controls the development of sexual dimorphism-the differences in appearance, physiology and behavior observed between males and females of a species. These differences are important for key functions such as sexual reproduction, and also influence other characteristics such as sex-specific disease progression. An important family of transcription factors, the Doublesex, mab-3 Related Transcription factors (DMRTs) control sex-specific development, particularly in the gonads, in most or all animals where they have been studied. Thus, an essential question in biology is how do the DMRTs control sex-specific development? In Drosophila, another set of transcription factors, encoded by the fruitless (fru) gene, controls sex-specific development of the nervous system and is thought to be regulated independently of the Drosophila DMRT Doublesex (Dsx). Here we present two important changes to our thinking about sexual development: 1) fru also acts to control sex-specific development outside the nervous system (in the gonad) and 2) sex-specific fru expression can be regulated by Dsx, in addition to its Dsx-independent regulation, providing a new mechanism for fru regulation that may be broadly utilized. Doublesex (Dsx) and Fruitless (Fru) are the two downstream transcription factors that actuate Drosophila sex determination. While Dsx assists Fru to regulate sex-specific behavior, whether Fru collaborates with Dsx in regulating other aspects of sexual dimorphism remains unknown. One important aspect of sexual dimorphism is found in the gonad stem cell (GSC) niches, where male and female GSCs are regulated to create large numbers of sperm and eggs. Here we report that Fru is expressed male-specifically in the GSC niche and plays important roles in the development and maintenance of these cells. Unlike previously-studied aspects of sex-specific Fru expression, which are regulated by Transformer (Tra)-mediated alternative splicing, we show that male-specific expression of fru in the gonad is regulated downstream of dsx, and is independent of tra. fru genetically interacts with dsx to support maintenance of the niche throughout development. Ectopic expression of fru inhibited female niche formation and partially masculinized the ovary. fru is also required autonomously for cyst stem cell maintenance and cyst cell survival. Finally, we identified a conserved Dsx binding site upstream of fru promoter P4 that regulates fru expression in the niche, indicating that fru is likely a direct target for transcriptional regulation by Dsx. These findings demonstrate that fru acts outside the nervous system to influence sexual dimorphism and reveal a new mechanism for regulating sex-specific expression of fru that is regulated at the transcriptional level by Dsx, rather than by alternative splicing by Tra.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available