4.5 Article

Integrated analysis of three newly sequenced fern chloroplast genomes: Genome structure and comparative analysis

Journal

ECOLOGY AND EVOLUTION
Volume 11, Issue 9, Pages 4550-4563

Publisher

WILEY
DOI: 10.1002/ece3.7350

Keywords

Chloroplast genome; Fern; Phylogenetic tree; RNA editing; Simple sequence repeat

Funding

  1. Science and technology research projects of Education Department of Heilongjiang Province [12541747]

Ask authors/readers for more resources

The study sequenced and compared the chloroplast genomes of several ferns, identifying highly variable loci and confirming the typical quadripartite structures of chloroplast genomes in ferns. The results also showed the relationships among these ferns in terms of their phylogenetic classification.
Background Some ferns have medicinal properties and are used in therapeutic interventions. However, the classification and phylogenetic relationships of ferns remain incompletely reported. Considering that chloroplast genomes provide ideal information for species identification and evolution, in this study, three unpublished and one published ferns were sequenced and compared with other ferns to obtain comprehensive information on their classification and evolution. Materials and Methods The complete chloroplast genomes of Dryopteris goeringiana (Kunze) Koidz, D. crassirhizoma Nakai, Athyrium brevifrons Nakai ex Kitagawa, and Polystichum tripteron (Kunze) Presl were sequenced using the Illumina HiSeq 4,000 platform. Simple sequence repeats (SSRs), nucleotide diversity analysis, and RNA editing were investigated in all four species. Genome comparison and inverted repeats (IR) boundary expansion and contraction analyses were also performed. The relationships among the ferns were studied by phylogenetic analysis based on the whole chloroplast genomes. Results The whole chloroplast genomes ranged from 148,539 to 151,341 bp in size and exhibited typical quadripartite structures. Ten highly variable loci with parsimony informative (Pi) values of > 0.02 were identified. A total of 75-108 SSRs were identified, and only six SSRs were present in all four ferns. The SSRs contained a higher number of A + T than G + C bases. C-to-U conversion was the most common type of RNA editing event. Genome comparison analysis revealed that single-copy regions were more highly conserved than IR regions. IR boundary expansion and contraction varied among the four ferns. Phylogenetic analysis showed that species in the same genus tended to cluster together with and had relatively close relationships. Conclusion The results provide valuable information on fern chloroplast genomes that will be useful to identify and classify ferns, and study their phylogenetic relationships and evolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available