4.5 Article

Faecal microbial metabolites of proteolytic and saccharolytic fermentation in relation to degree of insulin resistance in adult individuals

Journal

BENEFICIAL MICROBES
Volume 12, Issue 3, Pages 259-266

Publisher

WAGENINGEN ACADEMIC PUBLISHERS
DOI: 10.3920/BM2020.0179

Keywords

gut-derived metabolites; insulin sensitivity; excessive body weight

Ask authors/readers for more resources

This study compared fecal microbial metabolites between individuals with differing levels of insulin sensitivity and found no significant differences in metabolite concentrations or associations with markers of metabolic health. Further research is needed to understand the role of these microbial fermentation products in metabolic health and insulin sensitivity.
The gut microbiota may affect host metabolic health through microbial metabolites. The balance between the production of microbial metabolites by saccharolytic and proteolytic fermentation may be an important determinant of metabolic health. Amongst the best-studied saccharolytic microbial metabolites are the short-chain fatty acids acetate, propionate and butyrate. However, human data on the role of other microbial fermentation by-products in metabolic health are greatly lacking. Therefore, we compared in a cross-sectional study the faecal microbial metabolites (caproate, lactate, valerate, succinate, and the branched-chain fatty acids (BCFA) (isobutyrate, isovalerate)) between insulin sensitive (homeostatic model assessment of insulin resistance (HOMA-IR), HOMA-IR<1.85, IS) and insulin resistant (HOMA-IR>1.85, IR) individuals. Additionally, we assessed the relationships between faecal metabolites and markers of metabolic health including fasting glucose, insulin, free fatty acids, insulin resistance (HOMA-1R) and fasting substrate oxidation in 86 individuals with a wide range of body mass index. Faecal metabolite concentrations did not significantly differ between IS and IR. Furthermore, there were no associations between microbial metabolites and metabolic health markers, except for a slight positive association of isovalerate with carbohydrate oxidation (E%, std beta 0.194, P=0.011) and fat oxidation (E%, std beta -0..075, P=0.047), also after adjustment for age, sex and BMI. In summary, faecal caproate, lactate, valerate, succinate, and BCFA (isobutyrate, isovalerate) were not different between IR and IS individuals, nor was there any association between these faecal metabolites and parameters of metabolic health. Further human intervention studies are warranted to investigate the role of these microbially-derived fermentation products and their kinetics in metabolic health and insulin sensitivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available