4.7 Article

Climate drivers of large magnitude snow avalanche years in the US northern Rocky Mountains

Journal

SCIENTIFIC REPORTS
Volume 11, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-89547-z

Keywords

-

Funding

  1. U.S. Geological Survey Climate Research and Development Western Mountain Initiative and Snow and Avalanche Project

Ask authors/readers for more resources

The study found that historically, large magnitude avalanche years were associated with stormy winters and positive snowpack anomalies, while recent decades have been increasingly influenced by warmer temperatures and shallow snowpack. The amount of snowpack is directly related to avalanche probability, and with climate warming causing reductions in snowpack, there has been a decline in large magnitude avalanche probability.
Large magnitude snow avalanches pose a hazard to humans and infrastructure worldwide. Analyzing the spatiotemporal behavior of avalanches and the contributory climate factors is important for understanding historical variability in climate-avalanche relationships as well as improving avalanche forecasting. We used established dendrochronological methods to develop a long-term (1867-2019) regional avalanche chronology for the Rocky Mountains of northwest Montana using tree-rings from 647 trees exhibiting 2134 avalanche-related growth disturbances. We then used principal component analysis and a generalized linear autoregressive moving average model to examine avalanche-climate relationships. Historically, large magnitude regional avalanche years were characterized by stormy winters with positive snowpack anomalies, with avalanche years over recent decades increasingly influenced by warmer temperatures and a shallow snowpack. The amount of snowpack across the region, represented by the first principal component, is shown to be directly related to avalanche probability. Coincident with warming and regional snowpack reductions, a decline of similar to 14% (similar to 2% per decade) in overall large magnitude avalanche probability is apparent through the period 1950-2017. As continued climate warming drives further regional snowpack reductions in the study region our results suggest a decreased probability of regional large magnitude avalanche frequency associated with winters characterized by large snowpacks and a potential increase in large magnitude events driven by warming temperatures and spring precipitation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available