4.7 Article

Unraveling the stability landscape of mutations in the SARS-CoV-2 receptor-binding domain

Journal

SCIENTIFIC REPORTS
Volume 11, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-88696-5

Keywords

-

Ask authors/readers for more resources

The interaction between the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein and the ACE2 enzyme is crucial for the virus to enter cells, and current therapeutic efforts aim to affect this interaction. Analyzing spike protein mutations and toxicity potential provides insights for future vaccine development. Through computational exploration, potential mutations that can stabilize the spike protein and increase infectivity have been identified.
The interaction between the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein and the ACE2 enzyme is believed to be the entry point of the virus into various cells in the body, including the lungs, heart, liver, and kidneys. The current focus of several therapeutic design efforts explores attempts at affecting the binding potential between the two proteins to limit the activity of the virus and disease progression. In this work, we analyze the stability of the spike protein under all possible single-point mutations in the RBD and computationally explore mutations that can affect the binding with the ACE2 enzyme. We unravel the mutation landscape of the receptor region and assess the toxicity potential of single and multi-point mutations, generating insights for future vaccine efforts on mutations that might further stabilize the spike protein and increase its infectivity. We developed a tool, called SpikeMutator, to construct full atomic protein structures of the mutant spike proteins and shared a database of 3800 single-point mutant structures. We analyzed the recent 65,000 reported spike sequences across the globe and observed the emergence of stable multi-point mutant structures. Using the landscape, we searched through 7.5 million possible 2-point mutation combinations and report that the (R355D K424E) mutation produces one of the strongest spike proteins that therapeutic efforts should investigate for the sake of developing effective vaccines.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available