4.7 Article

A prostate-specific membrane antigen (PSMA)-targeted prodrug with a favorable in vivo toxicity profile

Journal

SCIENTIFIC REPORTS
Volume 11, Issue 1, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41598-021-86551-1

Keywords

-

Funding

  1. NIH [CA058236, EB024495, CA13475, CA184228]

Ask authors/readers for more resources

PSMA is a promising target for prostate cancer treatment, and the non-radioactive prodrug SBPD-1 has shown high specific targeting ability to PSMA-expressing tumors and favorable toxicity profile, indicating its potential as a therapeutic option.
Prostate-specific membrane antigen (PSMA) is a promising target for the treatment of advanced prostate cancer (PC) and various solid tumors. Although PSMA-targeted radiopharmaceutical therapy (RPT) has enabled significant imaging and prostate-specific antigen (PSA) responses, accumulating clinical data are beginning to reveal certain limitations, including a subgroup of non-responders, relapse, radiation-induced toxicity, and the need for specialized facilities for its administration. To date non-radioactive attempts to leverage PSMA to treat PC with antibodies, nanomedicines or cell-based therapies have met with modest success. We developed a non-radioactive prodrug, SBPD-1, composed of a small-molecule PSMA-targeting moiety, a cancer-selective cleavable linker, and the microtubule inhibitor monomethyl auristatin E (MMAE). SBPD-1 demonstrated high binding affinity to PSMA (K-i=8.84 nM) and selective cytotoxicity to PSMA-expressing PC cell lines (IC50=3.90 nM). SBPD-1 demonstrated a significant survival benefit in two murine models of human PC relative to controls. The highest dose tested did not induce toxicity in immunocompetent mice. The high specific targeting ability of SBPD-1 to PSMA-expressing tumors and its favorable toxicity profile warrant its further development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available