4.7 Article

Scarcity of scale-free topology is universal across biochemical networks

Journal

SCIENTIFIC REPORTS
Volume 11, Issue 1, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41598-021-85903-1

Keywords

-

Funding

  1. National Aeronautics and Space Administration [NNX15AL24G S02]

Ask authors/readers for more resources

Biochemical reactions are essential for all life functions and involve complex molecular interactions in cells and ecosystems. While true scale-free networks are rare, most biochemical networks are not scale-free. However, biochemical networks across different levels of organization exhibit a common structure, suggesting shared organizing principles.
Biochemical reactions underlie the functioning of all life. Like many examples of biology or technology, the complex set of interactions among molecules within cells and ecosystems poses a challenge for quantification within simple mathematical objects. A large body of research has indicated many real-world biological and technological systems, including biochemistry, can be described by power-law relationships between the numbers of nodes and edges, often described as scale-free. Recently, new statistical analyses have revealed true scale-free networks are rare. We provide a first application of these methods to data sampled from across two distinct levels of biological organization: individuals and ecosystems. We analyze a large ensemble of biochemical networks including networks generated from data of 785 metagenomes and 1082 genomes (sampled from the three domains of life). The results confirm no more than a few biochemical networks are any more than super-weakly scale-free. Additionally, we test the distinguishability of individual and ecosystem-level biochemical networks and show there is no sharp transition in the structure of biochemical networks across these levels of organization moving from individuals to ecosystems. This result holds across different network projections. Our results indicate that while biochemical networks are not scale-free, they nonetheless exhibit common structure across different levels of organization, independent of the projection chosen, suggestive of shared organizing principles across all biochemical networks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available