4.7 Article

Hypersonic impact properties of pristine and hybrid single and multi-layer C3N and BC3 nanosheets

Journal

SCIENTIFIC REPORTS
Volume 11, Issue 1, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41598-021-86537-z

Keywords

-

Ask authors/readers for more resources

Carbon, nitrogen, and boron nanostructures show promise as ballistic protection materials due to their excellent mechanical properties. This study investigated the ballistic properties of C3N and BC3 nanosheets, determining their critical perforation conditions and energy absorption characteristics. The results indicate that C3N nanosheets have higher absorption energy than BC3, and in hybrid structures, C3N layers can improve the ballistic properties of BC3.
Carbon, nitrogen, and boron nanostructures are promising ballistic protection materials due to their low density and excellent mechanical properties. In this study, the ballistic properties of C3N and BC3 nanosheets against hypersonic bullets with Mach numbers greater than 6 were studied. The critical perforation conditions, and thus, the intrinsic impact strength of these 2D materials were determined by simulating ballistic curves of C3N and BC3 monolayers. Furthermore, the energy absorption scaling law with different numbers of layers and interlayer spacing was investigated, for homogeneous or hybrid configurations (alternated stacking of C3N and the BC3). Besides, we created a hybrid sheet using van der Waals bonds between two adjacent sheets based on the hypervelocity impacts of fullerene (C60) molecules utilizing molecular dynamics simulation. As a result, since the higher bond energy between N-C compared to B-C, it was shown that C3N nanosheets have higher absorption energy than BC3. In contrast, in lower impact speeds and before penetration, single-layer sheets exhibited almost similar behavior. Our findings also reveal that in hybrid structures, the C3N layers will improve the ballistic properties of BC3. The energy absorption values with a variable number of layers and variable interlayer distance (X=3.4 angstrom and 4X=13.6 angstrom) are investigated, for homogeneous or hybrid configurations. These results provide a fundamental understanding of ultra-light multilayered armors' design using nanocomposites based on advanced 2D materials. The results can also be used to select and make 2D membranes and allotropes for DNA sequencing and filtration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available